

John Dalton

Ernest Rutherford

Chapter 2

Atomic Theory: Introduction

J.J. Thomson

Democritus

...A Short History

$5^{\text {th }}$ Century B.C.
 small Derticles:

Aristotle dismissed the idea as nonsense.

...A Short History

John Dalton (1766-1844)

1. Matter is made up of small particles
2. Particles (atoms) are indivisible.
3. Atoms of one element are identical and unique to that element.

4. Combinations of atoms in different whole number ratios are compounds.

...A Short History

J.J. Thomson (1856-1940)

Cathode rays come from atoms.
Electrons (cathode rays) are found within atoms.

Atoms are divisible into smaller pieces.

Plumb pudding atomic model.

J.J. Thomson

Rutherford's Experiment

Some α^{2+} particles observed to recoil backwards

Conclusion: Atoms have a small, massive, positively charged core: NUCLEUS

Most α^{2+} particles pass straight through the target

Conclusion: Matter and therefore atoms are mostly EMPTY SPACE

The Atom

Particle Inventory

- Proton
- Abbreviation: p^{+}
- $1+$ positively charged
- Mass $=1.67262 \times 10^{-24} \mathrm{~g}$ (1.00727 amu $\ldots \sim 1 \mathrm{amu}=1$ Dalton)
- Neutron
- Abbreviation: n^{0}
- Neutral ... no charge
- Mass $=1.67493 \times 10^{-24} \mathrm{~g} \quad(1.00866 \mathrm{amu} \ldots \sim 1 \mathrm{amu}=1$ Dalton $)$
- Electron
- Abbreviation: e^{-}
- 1- negatively charged
- Mass $=9.10939 \times 10^{-28} \mathrm{~g} \quad(0.00054858 \mathrm{amu} \ldots \sim 0 \mathrm{amu} \sim 0 \mathrm{Da})$

Particle Bookkeeping Nuclide Symbols

Example: Consider a neutral carbon atom...

Mass Number

The number of protons
\& neutrons in the nucleus

Atomic Number
Number of protons

Carbon's symbol

Electrons? For a neutral atom $\mathrm{p}+=\mathrm{e}-$
Electrons = 6

Atomic Mass Units...Defined

- Need a small unit of mass suitable for atoms and atomic particles
- "grams" is too big to be reasonable (electron's mass $=9.10939 \times 10^{-28} \mathbf{g}$)
- Define one carbon-12 atom = 12.00000...amu = 12 Da
- All other atomic weights are relative to carbon-12 atom

More Nuclide Symbols Isotopes: Same p^{+}...Different n^{0}

${ }_{24}^{50} \mathrm{Cr}$	${ }_{24}^{52} \mathrm{Cr}$	${ }_{24}^{53} \mathrm{Cr}$	${ }_{24}^{54} \mathrm{Cr}$
$24 \mathrm{p}^{+}$	$24 \mathrm{p}^{+}$	$24 \mathrm{p}^{+}$	$24 \mathrm{p}^{+}$
$50-24=26 n^{0}$	$52-24=28 \mathrm{n}^{0}$	$53-24=29 \mathrm{n}^{0}$	$54-24=30 \mathrm{n}^{0}$
$24 \mathrm{e}^{-}$	$24 \mathrm{e}^{-}$	$24 \mathrm{e}^{-}$	$24 \mathrm{e}^{-}$
Mass $=49.9461 \mathrm{amu}$	Mass $=51.9405 \mathrm{amu}$	Mass $=52.9407 \mathrm{amu}$	Mass $=53.9389 \mathrm{amu}$
Abundance 4.35\%	Abundance	Abundance 9.50\%	Abundance 2.36\%

Weighted Average Mass

$$
=(49.9461 \times 0.0435) \quad+(51.9405 \times 0.8379) \quad+(52.9407 \times 0.0950) \quad+(53.9389 \times 0.0236)
$$

Weighted Average Mass = 51.9961 amu

Weighted Averages Periodic Table

24 Cr 51.9961

Atomic Number
 Number of p^{+}

Average Atomic Mass

Electrons \& Protons

- \#e- = \#p+
- Electrically neutral
- Neutral atom
- \# e- < \# p+
- Electrically net Positive
- Positively charged atom
- "Cation"
- \# e- > \# p+
- Electrically net Negative
- Negatively charged atom
- "Anion"

Mass Spectrometry:

Experimentally determining the masses of ions Read and understand pg. 52 in textbook

TIME OF FLIGHT MASS SPECTROMETRY ...the great race!

Mass Spectrometry:

Experimentally determining the masses of ions Read and understand pg. 52 in textbook

IONS: 3 different masses

Time of Flight Mass Spectrometer
Which graph is correct????

