Fuels: What is a fuel?

"Any material that can be burned to release thermal energy is called a fuel.".

Hydrocarbon Fuels

Combustion Reaction:

$$
\text { Fuel }+\mathrm{x} \quad \rightarrow \mathrm{yCO}_{2(\mathrm{~g})}+\mathrm{zH}_{2} \mathrm{O}_{(\mathrm{g})}
$$

$\mathrm{O}_{2(\mathrm{~g})}$
Breaking C-H \& C-C Bonds
Breaking $\mathrm{O}=\mathrm{O}$ Bonds

Making C=O Bonds
Making O-H Bonds

Question: How should the "bonds made energy" compare to the "bonds broken energy" for an energy rich fuel?

Answer: The hydrocarbon bond energies (C-H and C-C) should be lower energy in comparison to the bonds made ($\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$).

Factors Affecting Fuel's Energy

Ethanol

Ethane
$\Delta H_{\text {combustion }}=-1368 \mathrm{~kJ} / \mathrm{mol}$
...less energy
Bonds to break: rich fuel

CC
347 kJ/mol
$358 \mathrm{~kJ} / \mathrm{mol}$ Relatively higher energy bonds must be broken!
...Reduces available combustion energy.
$\Delta \mathbf{H}_{\text {combustion }}$
$=-1560 \mathrm{~kJ} / \mathrm{mol}$
Bonds to break: ...More energy rich fuel.
CH C - C
413 kJ/mol
$347 \mathrm{~kJ} / \mathrm{mol}$

Fuel Comparisons: Heats of Combustion

Hydrogen
$\mathrm{H}_{2(I)} \quad+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \quad \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$
$\Delta \mathbf{H}_{\text {combustion }}$
-284 kJ/mol

Methane

$$
\mathrm{CH}_{4(\mathrm{~g})} \quad+2 \mathrm{O}_{2(\mathrm{~g})} \quad \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

-891 kJ/mol

Ethanol

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}+3 \mathrm{O}_{2(\mathrm{~g})} \quad \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

-1368 kJ/mol

Gasoline

$$
\mathrm{C}_{8} \mathrm{H}_{18(\mathrm{I})} \quad+121 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{CO}_{2(\mathrm{~g})}+9 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}
$$

-5452 kJ/mol

Per mole, the combustion of gas produces a lot of Energy!

Fuel Comparisons: Heats of Combustion

Hydrogen $\mathrm{H}_{2(1)}$

Methane
$\mathrm{CH}_{4(\mathrm{~g})}$
$\Delta \mathbf{H}_{\text {combustion }}$
-284 kJ/mol
$\Delta H_{\text {combustion }}$
-142 MJ/kg
$\Delta H_{\text {combustion }}$
-8 MJ/L

Ethanol
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{I})} \quad-1368 \mathrm{~kJ} / \mathrm{mol} \quad-30 \mathrm{MJ} / \mathrm{kg} \quad-19.59 \mathrm{MJ} / \mathrm{L}$

Gasoline
$\mathrm{C}_{8} \mathrm{H}_{18(\mathrm{I})}$
-5452 kJ/mol
-48 MJ/kg
-29.0 MJ/L
Per gram, hydrogen is a very energy rich fuel! Per Liter, gasoline is a very energy rich fuel!
http://www.chem.ox.ac.uk/vrchemistry/energy/

Fuel Comparisons: Storage

Hydrogen
$\mathrm{H}_{2(\mathrm{I})}$

Liquid Hydrogen Cryostat
http://www.hydrogen-cars.biz/liquid-hydrogen.htm
Liquid hydrogen must be stored in an insulated container to reduce boil off losses.

Methane
$\mathrm{CH}_{4(\mathrm{I})}$

Methane must be stored at high pressures in metal containers to keep it a liquid.

Gasoline
$\mathrm{C}_{8} \mathrm{H}_{18(\mathrm{I})}$

Infrastructure exists for transporting and delivering gasoline!

A future with no Fossil Fuel?

Fossil fuel production is expected to peak in the next $10-30$ years. (estimates vary a lot)

http://edugreen.teri.res.in
...at which point fossil fuel reserves will begin to decrease

Hybrid technologies, new battery technologies and alternate fuels will be employed to keep automobiles on the road.
...but a question....
What will we use as an airplane fuel in the future when no fossil fuels are left?
Leave your response on the D2L bulletin boarde.

