.


Monday April 15, 2024    Day 63

Thermodynamics of REDOX Reactions


Textbook References

19.5: Cell Potential, Gibbs Energy,
             
and the Equilibrium Constant

P2:   Table of Standard Reduction Potentials
           NOTE: Oxidation is ABOVE reduction in this table.


Course Lectures

22.1 pdf   Video* Thermo and Equil. connections



Standard Reduction Potentials and Gibbs Free Energy
Standard Reduction Potentials and Gibbs Free Energy
Standard Cell Potentials and Equilibrium Constants
Standard Cell Potentials and Equilibrium Constants
Objectives

1.  Utilize the REDOX, Equilibrium and
      thermodynamics relationships to
      determine
ΔG°
, Eocell and Keq from any one.

2.  Use the signs and/or magnitudes of one
      parameter (
ΔG°,  Eocell  and Keq ) to make
      qualitative predictions about the remaining
      two.

3.   Describe what must be true for
ΔG°,  Eocell 
      and Keq
in spontaneous and non-spontaneous
      situations.
     
Triangle
Homework Questions

56.1  Examine the following spontaneous REDOX reaction @ 25oC.

                                      3 Zn(s)    +     2 Cr3+(aq)     →     3 Zn+2(aq)   +    2 Cr(s)      

         a. 
Determine:   Eocell      ΔG° rxn   &   Keq     

         b.  How are the values for consistant with a spontaneous reaction?

56.2  Examine this electrochemical cell @ 25oC:

                                 Zn| Zn2+(aq) (1.0 M)      || Mg 2+(aq) (1.0 M)   | Mg

                      a.  Write out the net cell reaction.

                      b.  Determine: 
Eocell      ΔG° rxn   &   Keq            

                      c.  Is the cell reaction spontaneous the way the abbreviated cell diagram is written?

                      d.  What are the characteristics
Eocell  ,  ΔG°  and   Keq under these circumstances?

                      e.  What changes are required (if any) to the abbreviated cell diagram?
               
56.3  The oxidation of hydrogen by oxygen is one of the most-used reactions in fuel-cell technology.
         The overall reaction, is given below.
    
                                        2H2(g) + O2(g) → 2H2O(l)         ΔG° = –474 kJ/mol

          What is are
Eocell   Keq  for the fuel cell @ 25oC?

56.4    Consider the following information and use it to determine
Eocell  &   ΔG° rxn   @ 25oC.
   
                                      Zn(s) + Fe2+(aq) → Zn+2(aq) + Fe(s)                      K= 4.38 x 1010

Answers:  Click and drag in the space below

56.1  a. 
Eocell     =    0.0218  Volts      
              ΔG° rxn  =
  -12,620 J       (n = 6)       
              Keq       
=    162.6
         b.  All three quantities above are consistent with a spontaneous reaction:
               
Eocell    > 0 (positive)     ΔG° rxn  < 0  (negative)       Keq   >>   1  (HUGE)   

56.2   a.  Zn(s)   +   Mg2+(aq)    
Zn2+(aq)   +   Mg(s)  ...assumes cell diagram is correct with
                                                                                           oxidation on the left.
          b.  Eocell     =    -1.5942 Volts      
              ΔG° rxn  =
  + 3.076 x 105 J   (n = 2)           
              Keq       
=    1.19 x 10-54

          c.  non-spontaneous.  First clue was that Mg was more towards the top of the reduction
                                              table and should've been the one oxidized.

          d.
All three quantities above are consistent with a NON-spontaneous reaction:
              Eocell   < 0 (negative)     ΔG° rxn  > 0  (positive)       Keq   <<   1  (tiny)   

          e. The diagram should be reversed:
                            Mg | Mg 2+(aq) (1.0 M)    ||      Zn2+(aq) (1.0 M) |  Zn   

56.3     Eocell     =    + 1.228  Volts         Keq        =   1.22 x 1083   

56.4     Eocell     =    + 0.315 Volts         rxn      =   -6.07 x 104 J


.

Tuesday April 16, 2024   Day 64
The Nernst Equation: Non-Standard Cell Operation


Text book References

19.6: Cell Potential and Concentrations


P2:   Table of Standard Reduction Potentials


Course Lectures

22.2 pdf   Video The Nernst Equation


Galvanic Cells: Non-Standard Conditions (Nernst Equation)Galvanic Cells: Non-Standard  Conditions (Nernst Equation)
Triangle

Objectives

1.  Utilize the Nernst Equation to determine cell potentials under non-standard conditions.

2.  Describe what happens to the cell potential as the cell operates converting reactants
     into products.

3.  Determine cell ionic concentrations for different cell potentials

Homework Questions

57.1
Consider the following REDOX reaction and solution concentrations.
         What is the value of Eocell  and
Ecell  ?
                                            Zn(s)       +            Cu
2+ (aq)        Cu(s)        +        Zn2+ (aq)              
                                                                        1.00 M                                       0.0250 M

57.2 C
onsider the following REDOX reaction and solution concentrations.
       What is the value of Eocell  and
Ecell  ?
                                            Zn(s)       +            Cu
2+ (aq)        Cu(s)        +        Zn2+ (aq)              
                                                                        0.0250 M                                      1.00 M


57.3 Compare your
Ecell  values from 57.1 and 57.2.  Which situation is more spontaneous and why?

57.4 
Consider the following REDOX reaction and solution concentrations.
         What is the value of Eocell  and
Ecell  ?

                                          2Al(s)      +      3Cd2+(aq)     →      3Cd (s)     +     2Al3+ (aq)      
                                                                  0.10 M                                        0.60 M


57.5
Consider the following voltaic cell.
         a.  What is the net cell reaction?
         b.  What is the value of Eocell  and
Ecell  ?

                                            Cu(s)  | Cu2+(aq) (0.25 M)   ||   Ag+ (aq)  (4.50 M)   |  Ag(s)

         c.  What are the concentrations of Cu2+ and Ag+ when the cell potential has dropped to 0.43 Volts?


Answers:  Click and drag in the space below

57.1  
Eocell  =  1.1037 V     and Ecell  =  1.1511 V
                     
57.2  
Eocell  =  1.1037 V     and Ecell  =  1.0858 V

57.3    The more spontaneous cell has the larger Ecell value and this corresponds to problem 57.1
           This makes sense as there's more reactant present in 57.1 and it makes sense that the
           reaction would shift right to make more products forcefully.  (hence the larger Ecell value)

           This idea is actually at work as flashlight batteries wear out.  As they're used, reactant
           is converted into product.  Less reactant means smaller Ecell values and this lower voltage
           is responsible for the dimming of the light.

57.4    
Eocell  = 1.273 V      and Ecell   = 1.248 V

57.5    a.  
Cu(s)  +   2 Ag+ (aq)  (4.50 M)      Cu2+(aq) (0.25 M)    +    2 Ag(s)

           b.  Eocell  = 0.4577 V      and Ecell   = 0.5141 V

           c.  [Ag+] = 0.512 M                 [Cu2+] = 2.244 M

             Note that the silver ion concentration (a reactant) goes down and the copper ion
               concentration (a product) goes up as expected when the cell operates. 
.
.

Wednesday April 17, 2024    Day 65
The Nerst Equation:  Concentration Cells


Text book References

19.6: Cell Potential and Concentrations


Course Lectures

22.3  pdf  Video   Concentration Cells

Concentration Cells
>Concentration Cells
Concentration Cellos
Concentration Cells
Objectives

1.  Determine Ecell of a concentration cell

2.  Predict concentration changes as the concentration cell discharges.

3.  Relate concentration cell operation to entropy changes in the solutions.

4.  Use the Nernst equation to determine the concentration of an unknown solution from
     the measured Ecell

5.  Determine the pH of a solution using information from an H+ concentration cell.

Homework Questions

58.1 Examine the concentration cell at right and...

        a.  Write the
½ cell reactions making
             sure to include the solution
             concentrations in parenthesis.

        b. Write the net cell reaction again
             remembering to include the solution
             concentrations in parenthesis.

        c.  Write the abbreviated cell diagram
              for this concentration cell.
concentration cell

         d.  Determine Eocell, n and Ecell for this concentration cell

         e.   Determine the direction of electron flow through the wire.

         f.    Calculate the the Fe2+ molar concentrations when the cell no longer operates

         g.   Qualitatively compare the entropy of the concentration cell initially and when
               discharged.

58.2  Examine the following concentration cell:

                       Ni(s) |  Ni2+(aq) (0.50 M)    ||   
Ni2+(aq) (3.00 M) | Ni(s)    

        a. 
Write the net cell reaction including the solution concentrations in parenthesis.

        b. 
Determine Eocell, n and Ecell for this concentration cell

        c.  What are the molar concentrations when the cell no longer operates?


58.3 
Calculate the concentration of the unknown solution "x" for the following
         silver ion concentration cell:

                        Ag
(s)  |  Ag+(aq)  (x M)  ||  Ag+(aq) (1.00 M)  |  Ag(s)                  Ecell = 0.26 V


58.4  A pH probe is a H+(aq) concentration cell where the measured cell potential, Ecell,
         is used to determine an unknown hydrogen ion concentration and subsequently the pH.

         The following demonstrates the pH probe assembly using a standard hydrogen 
½ cell (SHE)
         and  another
½ cell containing  an unknown H+ concentration.

        
Determine the the unknown H+ concentration and the  pH  of the unknown solution:

        
Pt(s) | H2(g) (1 atm) , H+(aq)  (? M)  ||  H+(aq) (1.00 M),  H2(g) (1 atm) | Pt(s)       Ecell = 0.45 V



Click and drag below for answers
58.1 a.  Oxidation Fe'(s)  
→   Fe2+(aq)  (0.01 M)   +   2e-   Note that this solution conc. is low and must increase.

              
Reduction Fe2+(aq)  (0.10 M)   +   2e-   →   Fe''(s)   Note that this solution conc. is high and must decrease.

       b.  
  Fe'(s)     +   Fe2+(aq)  (0.10 M)  →   Fe2+(aq)  (0.01 M)   +    Fe''(s)

       c.     
Fe'(s)  |  Fe+2(aq)  (0.01 M)  ||  Fe+2(aq) (0.10 M)   |  Fe''(s) 
  
       d.     
Eocell = 0 V        n = 2            Ecell   0.0296 V   =   29.6 mV

       e.       Electrons flow from left to right through the wire.

       f.      
Both solutions have a concentration of 0.055 M when the cell is completely discharged.

       g.      Initially, there is lower entropy since one cell has high concentration and
                  the other cell has low concentration.

                Entropy is greater when the cell is completely discharged and the ion concentrations
                are equal.  In a sense, the ions have been distributed uniformly between the two
                half cells and we know from past experience that this is higher entropy.


58.2   a. 
Ni(s)     +   Ni2+(aq)  (3.00 M)  →   Ni2+(aq)  (0.50 M)   +    Ni(s)

          b. 
Eocell = 0 V        n = 2            Ecell   0.0230V   =   23.0 mV

          c. 
Both solutions have a concentration of 1.75 M when the cell is completely discharged.

58.3   [Ag+]unk4.056 x 10-5 M

58.4  
[H+]unk =  2.504 x 10-8 M       pH  = 7.601

          Note:  pH probes actually do contain 2 different
½ cells even though they appear to be
                      a single assembly.

                     One
½ cell, known as the "reference electrode" is housed in the probe assembly.  This
                     takes the place of the SHE electrode used above.

                     The other
½ cell is created when the probe is placed in a solution containing
                     hydrogen ions.   Our Vernier data acquisition system measures the cell's Ecell
                     and converts it into pH.



Thursday April 18, 2024     Day 66
Common Cells and Batteries

Text book References

19.7:  Batteries: Using Chemistry to
                  Generate Electricity


Course Lectures

23.2  pdf  Video   Common Battery Chemistries

Lead Acid Batteries

Lead Acid Batteries
Fuel Cells

Fuel Cells
Objectives

1.  Define "cell"  vs.  "battery"

2.  Qualitatively describe the 3 different battery
     chemistries at rightand their advantages and
     disadvantages.

3.  Given Ecell, calculate the Ebattery for any
      number of cells.

4.  Define the term "energy density" and how
     it applies to different battery chemistries.

Lithium Ion Cells

Lithium Ion Cells
Homework Questions

59.1  In a lead-acid cell, during discharge the following reactions occur at
         the lead electrode surfaces:
        
                      Pb(s)    +     HSO42–(aq)          →      PbSO4(s)    +
H+(aq)      +   2e        

                      PbO2(s) + HSO42–(aq) + 3H+(aq) + 2e   →    PbSO4(s)    +    2H2O(l)         


          a.  What is the net cell reaction?

          b.  Use the Standard Reduction table to determin  Eocell.

          c.  A battery is made up of more than one cells in series. 

               In a battery, all of the cells are connected "in series"  ... meaning one-after-the-other.
               In this arrangement, each cell's
Eocell value ADDS to the next.
            
               If car batteries are specified as 12 Volts, how many lead-acid cells are present?

59.2
   In a fuel cell, during discharge the following reactions occur at the electrode surfaces:

                          O2(g)       +      4H+(aq)      +      4e
      2H2O(l)          
                          H2(g)       
      2 H+(aq)      +       2 e-
         
          a.  What is the net cell reaction?

          b.  Use the Standard Reduction table to determine  Eocell.


59.3.  In a lithium ion battery, the following net cell reaction takes place:

                       
LiC6(s) + CoO2(s)            C6(graphite) +    LiCoO2(s)          Eocell = 3.60 Volts

            a. Most cell phone batteries are rated at 3.60 Volts.  How many cells are present?
                Is the term "battery" appropriate when talking about cell phones?

           b.  If a rechargeable, cordless vacuum cleaner has a battery pack rated at 18.0 Volts,
                 how many cells must be present in the pack?


59.4   Energy density is defined to be the amount of energy per liter.  (Mega Joules per Liter)
          Specific energy is defined to be the amount of energy per kg      (Mega Joules per kg)

                      Consider the following:

                      Gasoline:            Energy Density = 34.2 MJ/L      Specific Energy = 46.4 MJ/kg
         
                      Li-ion Battery: 
Energy Density = 2.63 MJ/L      Specific Energy = 0.875 MJ/kg
                      
            a.  If a fuel efficient automobile burns gasoline at a rate of 45 miles/gallon.  How
                 much energy in mega Joules is consumed during a 250. mile trip?

                 Useful Info:   Densitygasoline = 0.7489 g/cm3
                                        1 gallon           = 3.78541 L

            b. What weight of lithium ion batteries (kg and lbs) would be required to supply
                the same  amount of energy?

            c.  Based on the calculations above, it would seem that using lithium ion batteries
                 instead of gasoline to move vehicles would require an unreasonable battery mass.

                 However, electric motors are more efficient (~50%) than internal combustion gasoline
                 burning engines (~30%)  making more energy available for electrical motion.

                 In light of this information, what weight of lithium batteries are now required for the
                  250 mile trip?

59.5   The hydrogen fuel cell converts hydrogen and oxygen gas into energy via the following
          Reaction:
   O2(g)       +          2H2(g)         2H2O(l)           ΔGrxn  = -474.2 kJ/mol

          a.   How many moles of H2(g) would be required to produce the same amount of energy
                provided by gasoline in problem 59.4 a? 
         
          b.  Hybrid automobiles, like Honda's new Clarity (available in CA), use fuel cells
               and electric motors for propulsion.  (see 59.4 c).  Given the electric motor's high
               efficiency,  how many moles of hydrogen gas would be required for the 250 mile
               road trip?

          c.  Use the ideal gas law to determine the volume the H2(g) would require at
               T = 25oC and P = 1.0 atm.  Is this a large volume of H2(g)?

          d.  If all of the gas required (part b) were compressed into a steel pressurized gas
               tank (V = 50. L),  what would the pressure of the gas be in atm and pounds
               per square inch?

          e.  Do you see any problems associated with having compressed, high pressure
               hydrogen gas as an energy source in a fuel cell vehicle?


Click and drag below for answers


59.1  a.   Pb(s) +  PbO2(s)   +  2H2SO4(aq)    →   2PbSO4(s)   +  2H2O(l)    

         b.   Eocell = 2.046 volts

         c.   Each cell produces approximately 2 volts.  Thus it requires 6 cells to create 12 volts.

59.2   a.
   O2(g)       +          2H2(g)         2H2O(l)     


          b.   1.229 volts

59.3   a.  Only one battery is present in most cell phones.  This would/should be more accurately
               referred to as "a cell" since there is only one present.

          b.  There should be 5 cells in the battery pack.

59.4   a.  5.55 gallons of gasoline = 719.2279 MJ

          b.  822 kg     =   1812 pounds of lithium ion batteries required.

          c.  493 kg     =   1087 pounds for a 250 mile trip.

59.5  a. 1516.7 moles H2(g)
         b. 910.0 moles H2(g)
         c.  Vol = 22264 liters (5882 gallons) of H2(g) at 1 atm
         d.  445 atm or 6543 psi H2 gas in a 50 L gas cylinder
         e.  Oh yeah.  "Filling up your car" means dispensing high pressure H2 gas.
              And how do we supply stations with a supply of H2 gas.
              Driving around in a vehicle with high pressure, compressed H2 could be dangerous.

              That said, proper engineering and safety protocols could make this a viable option
              to gasoline.  The fact that the only biproduct is liquid water is desireable. 

              However,  electricity is required to make the H2 gas and if that electricity comes from
              fossil fuel burning electrical generation plants, the H2 produced is not "green."



.
.
.

Friday April 19, 2024   Day 67
Electrolysis and Non-spontaneous REDOX Chemistry



Text book References

19.8:  Electolysis: Driving Non-spontaneous
             Reactions with Electricity

Course Lectures

23.1 pdf   Video   Electrolysis (non-spont REDOX)


Introduction to Electrolysis
Introduction to Electrolysis
23.1 Electrolysis

23.1 Electrolysis
Homework Questions

60.1 
         For batteries, the discharging process is spontaneous.  As it happens, chemical potential
         energy (reactants) is convered into products and electrical energy that we
         use to power our phones, laptops, automobiles, etc. 

         However, once a battery is exhausted, the energy must be replaced.  This replacement
         procedure is known as charging and it doesn't happen on its own.  Rather, an external
         energy source (a.k.a. the battery charger) pushes electrical current into the battery in
         the opposite direction  This reverses the chemistry, reverses the REDOX reactions
         and converts products back into reactants at which point the battery is again charged.

         Battery charging is an example of electroysis: a process where  non-spontaneous REDOX
         chemistry takes place with the help of an external energy supply.

         For the lead acid cell, the reverse reactions are:
  
         
     Charging- reduction:  PbSO4(s)    + H+(aq)      +   2e        Pb(s)    +     HSO42–(aq)         

              Charging- oxidation:  PbSO4(s)    +    2H2O(l)  
     PbO2(s) + HSO42–(aq) + 3H+(aq) + 2e  

         Lead acid car batteries are often charged at 5.00 Ampere's (a.k.a. Amps or simply A)
         The Ampere is a measure of how much charge (in Coulombs a.k.a. C) that flows
         through the wire in 1 second.

                                                                                           1 Coulomb
                                                       1 Ampere(Amp)   =  ----------------
                                                                                             1 second

          We also know the charge of an electron:
1.602 x 10-19 Coulombs or in other words:

   
                                                    1 electron = 1.602 x 10-19 Coulombs

          And, of course we also know that 1 moleelectrons = 6.023 x 1023 electrons


          a. Let's assume that a 5.00 amp current is used to charge a lead acid battery for 3.00 hours.

               Use dimensional analysis determine

                      i. The charging current in units of C/s    
   
                      ii. The total charge (in Coulombs) that flowed during the 3.0 hours

                      iii. The total number of electrons that flowed during the 3.0 hours

                     
iv.  The moleselectrons of electrons that flowed during the 3.0 hours

(Shortcut:  Faraday's constant, 96485.332 C/molee- )

          b.  Refering now to the  "Charging-reduction" 
½ cell reaction  above, we see that it
               takes 2 electrons to form 1 Pb atom.  In other words there's a mole ratio that
               connects moles of electrons to moles of solid lead:

                                                                2 moleelectrons = 1 molePb

                Use this conversion factor to convert moles of electrons (part a iv) into
                moles of Pb.  

            c.  Next, determine the grams of Pb produced.  Does this production of lead make
                 the battery heavier?

           d.  During this time, how many grams of water are converted into products?

60.2  In the electrolysis cell shown at right,
         an outside energy source is used to convert
         H2O(l) into H2(g) and O2(g) via the following
         two half reactions:

          2
H2O(l)    →     O2(g)   + 4 H+ (aq) + 4 e            
            

         4 H+ (aq)
   +   4 e        →      2 H2(g)

         This process stores electrical energy as
         chemical potetntial energy:
H2(g) and
         O2(g)
 

         These in turn can be used as fuel or
         an energy source in fuel cell applications.
        
         If the electricity comes from renewable
         resources (wind, solar), it would  be
         considered "clean".
concentration cell

       An electrical current 0f 0.450 Amps is passed through the electrolysis cell above for
       10.0 minutes, what volume of oxygen and hydrogen gas in mL would we expect to collect?

                                                 Assume 25.0oC and 1.00 atm pressure.

60.3  A 40.0 amp current flowed through molten iron(III) chloride for 10.0 hours. 
         Determine the mass of iron and the volume of chlorine gas
         (measured at 25oC and 1 atm) that is produced during this time.

         Useful Information:  anode (oxidation):     2 Cl
            →  Cl2(g) + 2 e-              
                                            cathode (reduction):  Fe3+ + 3 e- 
  →  Fe(s)

60.4  Electrolysis has many applications.  For
         example, in the figure at right, two
         electrodes are immersed in a silver ion
         solution.  The first electrode, is pure Ag
         and is where silver is oxidized & dissolves.

         The second electrode is a metal fork
         where silver ions in the solution are
         reduced and thus coat or "plate" the
         metal fork with a beautiful, shiny, Ag
         layer.

         Anode:      Ag(s)   
→  Ag+(aq)   +   1 e-
         Cathode:  Ag+(aq)   +   1 e   -  Ag(s) 
        

         A silver-plated fork  typically contains
         about 2.00 g of Ag. If 12.0 h are required
         to achieve the desired thickness of the
        Ag coating, what is the average current
        that must flow during the electroplating 
        process
Ag electrolysis cell
Click and drag below for answers

60.1 a.  i.   5 C/s      ii. 54000 C     iii. 3.37079 x 1023 electrons     iv.  0.559745 mol electrons

        b.  0.279873 mol Pb

        c. 58.0 grams Pb     No. Conservation of mass requires the battery mass stay constant.

        d.  10.1 grams of water are converted into products

60.2  17.1 mL O2 and 34.2 mL H2

60.3   179 L of Cl2 gas and 278 grams of Fe(s)
  
60.4    Curent is 41.4 mA

.
.
.




End Week 14


Click here for
Laboratory


..................................................................

Syllabus

..................................................................

Grades: April 14


..................................................................

Zoom Office Hours
Wed 11:00 AM  - 1:00 PM  
PW: Chemistry

Also 30 minutes before lab in lobby

..........................................................

ASC Tutoring

Room S-2420      W  2 - 3 PM      Th  12 - 1 PM

1:1 tutoring through Navigate, in person at ASC front desk, Email or call 612-659-6140


Last day to withdraw is April 16
 
     Spring 2024 quiz listings                   

Weekly
Content
Archive


Week 1     Week 2

Week 3     Week 4

Week 5     Week 6

Week 7      Week 8

  Week 9     Week 10

Week 11    Week 12

Week 13    Week 14

Week 15   Week 16


Your  Exams
Room S-2200


Exam #1  Mar 14  (Th)
Exam #2   May 2  (Th)
Final Exam  May 8 (W)



Sample Exams
from Fall 2023

Exam #1
   
Exam #2

March 13, 2024 Exam #1 Review  Session Video Link

Principles of Chemistry 2
CHECK.   YOUR.     EMAIL
.
Check out the TRIO Starting Point Program!!

Lab Reports:  
File type: PDF    File name:   Your_Name_Experiment Name.PDF






u