.

Week 10  Day 1  Monday October 24,  2022


Part I
Solubility Product Ksp: Solids in water and solubility


Textbook Readings

17.5: Solubility Equilibria
          and the Solubility Product Constant

17.6: Precipitation



Course Lectures


16.1 pdf   Video* Solubility and Ksp



Objectives

1.  Correctly write solubility equilibrium
      reactions with the solids always appearing
      on the reactant side

2. Write the Law of Mass Action
     expressions for solubility equilibria.

3.  Calculate the molar and gram solubilities
     for salts in pure water given Ksp values.

4.  Given molar solubility values, determine Ksp

5.  Use Ksp values to compare solubilites of solids.
 
Solubility Equilibria: Ksp and molar solubility



Homework Problems


 Answer these questions.  Click and drag over the space below for answers.

36.1   Write the chemical equation showing how PbBr2 dissociates and write the Ksp
          Law of Mass Action expression.

36.2  Write the chemical equation showing how Bi2S3 dissociates and write the Ksp
          Law of Mass Action expression.

36.3  a.  Calculate the molar solubility (S) of silver chloride (AgCl) in distilled water
                by solving the following ICE problem.  Report the value of
S with the correct units.

                                  AgCl(s)
↔   Ag+(aq)     +     Cl-(aq)         Ksp = 1.77  x 10-10.
                             I      ~              0.00 M           0.00 M
                            C                        +
S                + S
                            E                          S                     S

          b.  Convert the molar solubility (molAgCl/L) you calculated in part "a" into
               gram solubility (gAgCl/L)  using the AgCl molar mass:  143.320689 g/mol

36.4  Calculate the molar AND gram solubility tin (II) hydroxide (Sn(OH)2
          in distilled water given that 
Ksp =5.45  x 10-27.

36.5  Calculate the gram AND molar solubility of bismuth sulfide (Bi2S3 )
         in distilled water given
Ksp = 1.82  x 10-99.


Answers:  Click and drag in the space below

1.  PbBr2(s)  <--->    Pb2+(aq)     +     2 Br-(aq)         Ksp = [Pb2+][Br-]2
2.  Bi2S3(s)   <--->   2 Bi3+(aq)     +     3 S2-(aq)          Ksp = [Bi3+]2[S2-]3
3.  a.  Molar solubility = 1.33 x 10-5 mole/Liter
     b. 1.91 x 10-3 g/L
4.  Molar solubility = 1.11 x 10
-9 mole/Liter    Gram Solubility = 1.69 x 10-7 g/L
5. Molar solubility = 7.00 x 10-21 mole/Liter
    Gram Solubility = 3.60 x 10-18 g/L


.
.

  Week 10 Day 2  Tuesday October 25,  2022


PART 2     
Solubility Product Ksp: Solubility in Solutions
The "COMMON ION" effect


Textbook Readings

17.6: Precipitation



Course Lectures

16.2 pdf   Video* Solubility and Common Ions

Objectives

1. Describe what is meant by a "Common Ion"

2. Use pre-existing common ion
    concentrations to determine
    new molar and gram solubilities for
    sparingly soluble salts

3.  Describe why a pre-existing common ion
     concentration reduces the solubility of a
     sparingly soluble salt.

4.  Convert molar solubility (moles/L) into
      gram solubility (g/L) using the molar
      mass of the solute.

Solubility Equlibria: Common Ion Effect


Homework Problems


37.1  In the Le Chatelier Principle lab, you studied the following colorful complex-ion
          equilibrium that took place in a methanol solution:

         CoCl42-(methanol)     +     6 H2O
(methanol)     ↔    Co(H2O)62+(methanol)     +     4 Cl-(methanol)

         One of the "stresses" you applied to this equilibrium was small amounts of HCl.

         Why was additional HCl a "stress" and specifically
         what was the "Common Ion" in this case?

37.2 
Calculate the molar solubility (S) and gram solubility (μg/L) of  PbSO4 in distilled water
         by solving the following ICE problem:

                PbSO4(s)  
↔   Pb2+(aq)     +     SO42-(aq)        Ksp =   1.96 x 10-8
             
I      ~              0.00 M               0.00 M
              C                        +
S                    + S
              E                          S                        S  


37.3 Calculate the molar solubility (S) and gram solubility (μg/L) of  PbSO4 in 0.100 M Na2SO4
         by solving the following ICE problem:

                PbSO4(s)  
↔   Pb2+(aq)     +     SO42-(aq)        Ksp =   1.96 x 10-8
             
I      ~              0.00 M               0.100 M
              C                        +
S                    + S
              E                           S                        S  

37.4  Compare the solubilities you calculated in 37.2 and 37.3.  Explain why
PbSO4 is so much
         more soluble in distilled water.

37.5 Calculate the molar and gram solubility (μg/L) of  AgCl in a 0.050 M KCl solution? 
        
Ksp for AgCl is 1.00 x 10-10   

37.6 Calculate the molar and gram solubility (mg/L) of  Ag2CrO4 in  0.010 M K2CrO4 solution.  
        
Ksp for Ag2CrO4 = 1.12 x 10-12

Answers:  Click and drag in the space below

37.1    HCl is a strong acid and  completely ionizes.  So, you were really adding H+ and
           Cl- ions to the equilibrium mixture.  H+ doesn't appear in the equilibrium reaction
           and in this case, has no effect. 

           However, by adding HCl, you're also adding Cl- ions and these do appear in the
           equilibrium reaction.  Thus, Cl- is considered a "common ion" (...an ion that your
           addition of HCl and the equilibrium reaction have in common.)

           The additional Cl- ions cause the reaction to shift left in favor of the blue CoCl42- reactant.

37.2  
Molar Solubility = 1.40 x 10-4 moles/Liter         Gram Solubility = 42459 μg/L

37.3  Molar Solubility = 1.96 x 10-7 moles/Liter          Gram Solubility = 59.4 μg/L

37.4 
PbSO4 is more soluble in distilled water since significant amounts of both Pb2+ and SO42-
         must be produced to reach equilibrium. (They both started at zero).

         However, in problem 37.3,
SO42- has a "head start" and SO42- is the common ion.

         Consequently, the equilibrium in 37.3 doesn't have to shift as far to the right
         to reach equilibrium levels and less of the solid dissolves.

37.5  Molar Solubility = 2.00 x 10-9 moles/Liter         Gram Solubility = 0.287 μg/L

37.6  Molar Solubility = 5.29  x 10-6 moles/Liter          Gram Solubility = 1.76 mg/L

.
.

Week 10  Day 3  Wednesday October 26,  2022


Solubility Product:  Precipitation Threshholds
And Silver Recovery


Textbook Readings


OS: 15.1 Precipitation and Dissolution

LT: 17.6: Precipitation





Course Lectures


16.4 pdf   Video* Precipitation Thresholds

16.5 pdf   Video* Co-precipitation

Objectives

1. Perform dilution calculations to
    determine the new initial concentrations
    of reactant species

2. Use the balanced solubility chemical
    equilibrium reaction to determine the
    Law of Mass Action expression

3. Use the Law of Mass action and diluted
    reactant concentrations to determine a
    value of Qsp

Predicting Precipitate Formation
Predicting Precipitate Formation

4. Compare Qsp to Ksp:

           Qsp  < 
Ksp    Reaction shifts right and solid dissolves.        ...Solution is unsaturated
          
Qsp  Ksp     No shift.  Equilibrium.                                     ...Solution is saturated.
          
Qsp   > Ksp     Reaction shifts left and precipitate forms.    ... Solution is saturated

5. Given several different precipitation possibilities, predict if any will precipitate under
    the given conditions.

6.  Use solubility principles to determine the percent recovery of aqueous metals in solution
      as precipitates.


Homework Problems


38.1   Consider the following solution preparations and ionic concentrations for AgCl.
          Calculate
Qsp , compare it to Ksp and predict if solid AgCl will precipiate.

           Useful Information:   AgCl(s)   
   Ag+(aq)   +   Cl-(aq)            Ksp =  1.77 x 10-10

                                                       
Qsp  =   [Ag+][Cl-]                    

           a. 
[Ag+]    =      2.50 x 10-5 M            [Cl-=      2.50 x 10-5 M
 
           b. 
[Ag+]    =      1.33 x 10-13 M           [Cl-=      8.90 x 10-5 M

           c.
  [Ag+]    =      5.00 x 10-5 M            [Cl-=      2.00 x 10-6 M
 

38.2  1250.0 mL of 0.100 M AgNO3 are mixed with 1.50 mL of 0.0050 M NaCl?

         a.  Perform dilution calculations and determine the initial concentrations of
              the Ag+ and Cl- ions.

         b.  Use the concentrations you determined in part "b" and calculate a value for Qsp.

         c.  Compare your value of Qsp to Ksp and determine whether a precipitate should form
              under these conditions.


38.3   Given a 1.35 x 10-6 M AgNO3 solution, what is the minimum chloride ion concentration
          required to begin the AgCl precipitation formation?

38.4    Silver, if present in a waste solution, is worth recovering (Silver is expensive!)

          Given  500.0 mL of a waste solution where
[Ag+]  = 0.00330 M

          a. How many moles and grams of silver metal are present in this waste solution?

          b. Concentrated HCl is added in small amounts to increase
[Cl-]. What is the
              minimum
[Cl-] required for precipitation of AgCl to begin?

              Note: For this problem and those that follow, we'll assume the volume
                        contributed by the additional HCl is insignificant.


          c. If enough HCl is added to the solution for the concentration of chloride ion to be
              0.0000100 M, what is the concentration of silver ions still remaining in solution?

          d.  Use your answer to part "c" and the total solution volume (500.0 mL) to determine
               
the moles and grams of silver metal still present in this waste solution.

          e.  What percent of the original silver was precipitated in this procedure?

38.5   Small amounts of concentrated HCl are added to 750.0 mL of a waste solution that is
          known to be 0.155 M  in silver metal ions.
 

          If the [Cl-] levels are increased to 4.5 x 10-7 M, what percent of the original silver
          is precipitated? (Assume the added volume of the HCl is insignificant)

Click and drag the region below for correct answers

38.1   a.  Qsp = 6.25 x 10-10      Qsp > Ksp     Reaction shifts left.    
                                                                            Solid precip forms
                                                                               Solution is Saturated


          b.
Qsp = 1.18 x 10-17      Qsp < Ksp     Reaction shifts right.    
                                                                            Any solid AgCl present dissolves (solubility increases)
                                                                                 Solution is initially unsaturated

          c. 
Qsp = 1.00 x 10-10      Qsp = Ksp     Reaction at equilibrium  
                                                                            No visible change to any solid present
                                                                                  Solution is saturated.

           
38.2   a.  
[Ag+]    =    0.09988 M      [Cl-=  5.9928  x 10-6 M

          b.    Qsp      =      5.9856 x 10-7

          c.    
Qsp > Ksp       Reaction shifts left and precipitate is observed.


38.3   Ksp  =   [Ag+][Cl-]   
                                            1.77x 10-10
(1.35 x 10-6 ) [Cl-
                                                                                                   
[Cl-] =  1.31 x 10-4 M   


38.4    a.  0.001650 moles of Ag    =   0.1779 grams Ag+  in solution

           b. minimum [Cl-] for precipitation to begin = 5.36 x 10-8 M

           c. 
[Ag+]    =      1.77 x 10-5 M

           d.  Assuming 500.0 mL total volume:    
                8.85 x 10-6 moles Ag =   9.55 x 10-4 grams Ag  in solution

           e.  99.5 % of silver originally has been precipitated from solution.

38.5    99.8% of dissolved silver has been precipitated as solid AgCl

.

Week 10  Day 4  Thursday October 27,  2022

Selective-Precipitation


Textbook Reading

Selective Precipitation


Course Lectures

16.5 pdf   Video* Co-precipitation

Objectives

1.  Use the associated Ksp values to determine
     the order solids precipitate from a solution
     that contains a mixture of metal cations

2.  Determine anion threshold concentrations   
     required for all possible solids to ppt.

3.  For the first ion to precipitate, determine
     it's percent precipitation when a second ion
     begins to ppt.
 
Selective Precipitation (Dr. Dave)
Objectives

1.  Use the associated Ksp values to determine the order solids precipitate from a solution
     that contains a mixture of metal cations

2.  Determine anion threshold concentration required for a solid to precipitate.


Homework Problems

39.1   A solution contains both Cl⁻ ions (0.050 M) and I⁻ ions (0.050 M).

          Next a concentrated Cu+ solution is slowly added to to precipitate CuCl and CuI sequentially.

        a.  Use the Ksp values below to determine the copper ion thresholds required to precipitate
             CuCl and CuI.

                            
CuCl    Ksp  = 1.0 × 10-6                   CuI Ksp  = 5.1 × 10-12

        b.  Use your answers from part "a" to determine which of the two precipitates forms first.

        c.  How can the Ksp values be used to arrange ions in order of precipitation and how does
             this relate to the idea of "solubility?"

39.2  A solution contains equal concentrations of of I-, Br-, Cl- and CN-
         If concentrated, aqueous AgNO3 is slowly added, what is the order of precipitation?

                           AgI Ksp   =   8.0 x 10-17         AgCl   Ksp = 1.77 x 10-10
      
                           AgCN Ksp = 1.6 x 10-14         AgBr   Ksp = 7.7 x 10-13               

39.3   (Source) Concentrated BaCl2 is slowly added to a solution that is 1.0 x 10-4 M in
          sodium sulfate (Na2SO4) and
1.0 x 10-4 M in sodium selenate, Na2SeO4.

          a.  Which anion precipitates out of solution first?

          b.  What percentage of the first ion has precipitated when the second anion begins to precipitate?

                BaSO4     Ksp = 1.1 x 10-10             BaSeO4      Ksp = 2.8 x 10-11.


                               (Assume no volume change upon the  addition of BaCl2)

39.4  
(Source) A solution  containing Ni2+ (0.10 M) and Cu2+ (0.10 M) are separated using selective
        precipitation by the addition of solid Na2CO3.

       How much of the first precipitated ion (in %) remains at the point when the second ion
       begins to precipitate?

                             NiCO3
Ksp = 1.4 x 10-7                 CuCO3    Ksp = 2.5 x 10-10

                                 (Assume no volume change upon the  addition of Na2CO3)

Answers:  Click and drag in the space below

39.1  a.  CuCl(s)     [Cu+]threshold = 2.0 x 10-5 M        CuI(s)       [Cu+]threshold = 1.02 x 10-10 M

         b.  The CuI threshold is lower and therefore reached first.  CuI precipitates before CuCl

         c.  As long as the solid salts are of the same form,
Ksp values can be used to predict the
              order of precipitation.  In this case, both salts are 1 : 1 salts (i.e. 1 cation to 1 anion)
             and the salt with the small Ksp value will precipitate first (CuI).

             You would need to calculate solubility values when comparing 1:1 salts with other
              salts having different cation to anion ratios.  For example comparing  
              1:1  CuOH     to  1 : 2  Ca(OH)2 would require an ICE solubility
              problem for each salt before deciding which precipitated out of solution first.

39.2  These are all 1:1 salts and their
Ksp values can be used to order them from least soluble
          (first to precipitate) to most soluble (last to precipitate.

          First to ppt (least soluble)    AgI  ... AgCN ... AgBr ... AgCl  Last to ppt (most soluble)

39.3 & 39.4  Solutions available here.
.
.
.
.
.
.
.