Material Shift

Performed BEFORE the I.C.E. Equilibrium Solution

...when a strong/large equilibrium shift is predicted.

	Problem 1: K _c << 1	Favors Reactants and only Reactants initially present X~0 Assumption validNo material shift required
Converting Products to Reactants		
Converting Reactants to Products	Problem 2: K _c << 1	Favors Reactants and only Products initially present X~0 Assumption Invalid & Material shift required
Making equilibrium mathematics more easily solved	Problem 3: K _c << 1	Favors Reactants and only Products initially present X~0 Assumption Invalid & Material shift required
	Problem 4: K _c >> 1	Favors Products and BOTH Products and Reactants are initially present. X~0 Assumption Invalid & Material shift required

1. No Material Shift Required

X = 0

1.00 mole of H_2S gas is placed in a closed 2.00 liter container Assume that no product is originally present and determine the concentrations of all species after equilibrium is reached.

	$2 H_2 S_{(g)} \leftrightarrow$	2 H _{2(g)} +	- 1 S _{2(g)}	$K_{C} = 1.67 \times 10^{-7}$ Small K _c \Rightarrow Favors Reactants
Ι	0.500 M	0.000 M	0.000 M	Initially, only <u>reactants</u> are present.
С	-2X	+2X	+X	Shifts <i>weakly</i> to the right (products). CAN use X ∼ 0 assumption. ☺
Е	0.500 M – 2X	0.000 +2X	0.000 +X	Easy math ahead. Material Shift NOT REQUIRED
[H ₂] ² [H ₂ S	$\frac{[S_2]}{[S_2]^2} = \frac{(2X)^2 X}{(0.500 - 2X)^2}$	$\frac{1}{2} = \frac{4x}{(0.50)}$	Solve for "X" = 1.67	7×10^{-7} X = 2.18 ₅₄ × 10 ⁻³

Reactants!

1. No Material Shift Required

 $[H_2]_{eq} =$ = $2.18_{54} \times 10^{-3}$ M $[S_2]_{eq} =$ X ...most of original reactant remains. ...only small amounts of product form.

(2X)

= $4.37_{08} \times 10^{-3}$ M

2X × 100 = 0.87% 0.500 0.87% < 5%

ii. Equilibrium Check						
$[H_2]^2 [S_2]$						
[H ₂ S] ²						
$(4.37_{08} \times 10^{-3})^2$ $(2.18_{54} \times 10^{-3})$						
(0.496) ²						
$= 1.69_{96} \times 10^{-7} = K_{c}$						

2. Material Shift Required

1.00 mole of H_2 gas and 0.500 mole S_2 are is placed in a closed 2.00 liter container Assume that no H_2S is originally present and determine the concentrations of all species after equilibrium is reached.

Initial Moles	2 H ₂ S _(g) 0.00 moles	$\leftrightarrow \begin{array}{c} 2 \\ H_{2(g)} \\ 1.00 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	+ 1 S _{2(g)} 0.500 mole : 1 ratio	$K_C = 1.67 \times 10^{-7}$ Small $K_c \Rightarrow$ Favors Reactants Initially, only <u>products</u> are present. Shifts <i>strongly</i> to the left (reactants).
Material Shift	+1.00 mole	- 1.00 mol e	- 0.500 mole	Can't use X ~ 0 assumption. Nasty math ahead.
Final Moles	1.00 moles	0.00 moles	0.00 moles	Material Shift: Convert product to reactant
Initial	1.00mol/2.00L 0.500 M	0.000 M	0.000 M	Same as problem 1 previously solved using X ~ 0 assumption.
[H ₂ S] _{eq}	= 0.496M	$[H_2]_{eq} = 4.37_{08} \times 10^{-3} M$	$[S_2]_{eq} = 2.18_{54} \times 10^{-3} \text{ M}$	

Reactants!