Material Shift

Performed BEFORE the I.C.E. Equilibrium Solution
...when a strong/large equilibrium shift is predicted.

Problem 1: $\mathrm{K}_{\mathrm{c}} \ll 1$ Favors Reactants and only Reactants initially present X~0 Assumption valid...No material shift required

Converting Products to Reactants
Converting Reactants to Products

Making equilibrium mathematics more easily solved

Problem 2: $\mathrm{K}_{\mathrm{c}} \ll 1$ Favors Reactants and only Products initially present X~0 Assumption Invalid \& Material shift required

Problem 3: $\mathrm{K}_{\mathrm{c}} \ll 1$ Favors Reactants and only Products initially present X~0 Assumption Invalid \& Material shift required

Problem 4: $K_{c} \gg 1$ Favors Products and BOTH Products and Reactants are initially present. X~0 Assumption Invalid \& Material shift required

1. No Material Shift Required

1.00 mole of $\mathrm{H}_{2} \mathrm{~S}$ gas is placed in a closed 2.00 liter container Assume that no product is originally present and determine the concentrations of all species after equilibrium is reached.
$K_{C}=1.67 \times 10^{-7}$
Small K ${ }_{c} \Rightarrow$ Favors Reactants Initially, only reactants are present. Shifts weakly to the right (products). CAN use $\mathrm{X} \sim 0$ assumption. ©

Easy math ahead.
Material Shift NOT REQUIRED

$$
\frac{\left[H_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=\frac{(2 \mathrm{X})^{2} \mathrm{X}}{\left(0.500-(2 \mathrm{X})^{2}\right.}=\frac{4 \mathrm{X}^{3} \quad \text { Solve for " } \mathrm{X} \text { " }}{(0.500)^{2}}=1.67 \times \mathbf{1 0}^{-7} \mathrm{X}=\mathbf{2 . 1 8} \mathbf{5}_{54} \times \mathbf{1 0}^{-\mathbf{3}}
$$

1. No Material Shift Required

$$
X=2.18_{54} \times 10^{-3}
$$

i. Equilibrium Concentrations
$\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\text {eq }}=0.500-2 \mathrm{X}=0.495_{63} \mathrm{M}=0.496 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=2 \mathrm{X}=4.37_{08} \times 10^{-3} \mathrm{M}$
$\left[S_{2}\right]_{\text {eq }}=X=2.18_{54} \times 10^{-3} \mathrm{M}$
...most of original reactant remains.
...only small amounts of product form.

iii. Equilibrium Check

$$
\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}
$$

$$
\left(4.37_{08} \times 10^{-3}\right)^{2}\left(2.18_{54} \times 10^{-3}\right)
$$

$(0.496)^{2}$

$$
=1.69_{96} \times 10^{-7}=K_{c}
$$

2. Material Shift Required

1.00 mole of H_{2} gas and 0.500 mole $_{2}$ are is placed in a closed 2.00 liter container Assume that no $\mathrm{H}_{2} \mathrm{~S}$ is originally present and

$$
\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{eq}}=0.496 \mathrm{M} \quad\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=4.37_{08} \times 10^{-3} \mathrm{M} \quad\left[\mathrm{~S}_{2}\right]_{\mathrm{eq}}=2.18_{54} \times 10^{-3} \mathrm{M}
$$

