3. Material Shift Required

Assuming no $\mathrm{H}_{2} \mathrm{~S}$ is originally present,
determine the concentrations of all species after equilibrium is reached.

3. Material Shift Required

1.00 mole of H_{2} gas and 0.250 mole $_{2}$ are is placed in a closed 2.00 liter container Assuming no $\mathrm{H}_{2} \mathrm{~S}$ is originally present,
determine the concentrations of all species after equilibrium is reached.

$$
\begin{aligned}
& \text { C -2X }+2 X \quad+X \\
& \text { E 0.250-2X } \quad 0.250+2 X \quad X \\
& \frac{\left[H_{2}\right]^{2}\left[S_{2}\right]}{\left[H_{2} S\right]^{2}}=\frac{\left(0.250+(2 X)^{2} X\right.}{\left(0.250-(2 X)^{2}\right.}=\frac{(0.250)^{2} X}{(0.250)^{2}}=1.67 \times 10^{-7} \quad X=1.67 \times 10^{-7}
\end{aligned}
$$

3. Material Shift Required

