4. Material Shift Required (Large K_c)

0.250 moles of $N_{2(g)}$, **0.500** moles of $H_{2(g)}$ and **0.100** moles of NH_3 are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached. **Products!**

Limiting Excess \leftrightarrow 2 NH_{3(g)} $K_{c} = 3.70 \times 10^{8}$ + 3 $H_{2(g)}^{-}$ $N_{2(g)}$ Large $K_c \implies$ Favors Products Initial 0.100 mole 0.250 moles 0.500 mole Initially, a lot of reactant is present. Moles More Product coming! 3 ratio NOT A 1 Shifts strongly to the right (products). Mole ratio Adds to the pre- existing 0.100 moles N₂ Limiting 0.250 mole N_{2 ×} 2 mole NH₃ 0.500 mole NH₃ Can't use X ~ 0 assumption. Determination 1 mole N₂ 1 Larger \Rightarrow Excess Nasty math ahead. **Material Shift:** H₂ Limiting Mole ratio **Convert reactant to product** 0.500 mole H 2 mole NH₂ 0.333₃₃ mole H₂S Determination Smaller \Rightarrow Limiting 1 3 mole H₂ 0.250 mole N_{2 initially} Limiting - 0.166₆₆ mole N_{2 consumed} Mole ratio 1 mole N₂ Left-over N₂ 0.500 mole H₂ = 0.166₆₆ mole N_{2 consumed} x Left-over $N_2 = 0.083_{33}$ mole $N_{2 \text{ leftover}}$ Determination 3 mole H₂ 1

4. Material Shift Required (Large K_c)

0.250 moles of $N_{2(g)}$, **0.500** moles of $H_{2(g)}$ and **0.100** moles of NH_3 are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached.

Initial Moles	Excess N _{2(g)} + 0.250 moles	Limiting 3 H _{2(g)} 0.500 mole	$\leftrightarrow 2 \text{ NH}_{3(g)}$	$K_{C} = 3.70 \times 10^{8}$ PRODUCTS!
Material Shift	- 0.166 ₆₆ mole	-0.500 mole	+ 0.333 ₃₃ mol	e
Final Moles	0.08333 moles	0.000 moles	0.433 ₃₃ mol	es
	0.083 ₃₃ mols/1.50 L	0.00 mols/1.50 L	0.433 ₃₃ mols/1.50 L Sin	ce there is no H_2 on the reactant side,
Initial	0.055 ₅₅ M	0.000 M	0.288 ₈₈ M ^{the}	e reaction is shifted as far right as is possible
			The	e X ~ 0 assumption will be valid.

4. Material Shift Required (Large K_c)

0.250 moles of $N_{2(g)}$, **0.500** moles of $H_{2(g)}$ and **0.100** moles of NH_3 are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached.

4. Material Shift Required (Large K_c)

0.250 moles of $N_{2(g)}$, **0.500** moles of $H_{2(g)}$ and **0.100** moles of NH_3 are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached.

$$E \qquad \begin{array}{cccc} N_{2(g)} + & 3 & H_{2(g)} & \leftrightarrow & 2 & NH_{3(g)} \\ \hline 0.055_{55} + X & 0.000 + 3X & 0.288_{88} - 2X \\ Critical X=0 & X & = 5.31_{77} \times 10^{-4} \end{array} \qquad \begin{array}{c} K_c & = & 3.70 \times 10^8 \\ \hline 0.288_{88} - 2X \\ Less Critical X=0 \end{array}$$

i. Equilibrium Concentrations	<u>ii. 5% check</u>	<u>iii. Equilibrium Check</u>
[N ₂] _{eq} = 0.055 ₀₂ + X = 0.055 ₅₅ M	Most Critical: (0.055 + X)	[NH ₃] ²
$[H_2]_{eq} = 0.00 + 3X = 1.59_{53} \times 10^{-3} M$	X 100 - 1 %	$[N_2][H_2]^3$
$[NH_3]_{eq} = 0.288_8 - 2X = 0.287_{73} M$	0.055 × 100 = 1 %	$(0.287_{73})^2$
most of material shifted product remains.	1% < 5% 🙂	$(0.055_{55})(1.59_{53} \times 10^{5})^{\circ}$
only small changes to reactant amounts		