4. Material Shift Required (Large K_{c})

0.250 moles of $\mathrm{N}_{2(\mathrm{~g})}, 0.500$ moles of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.100 moles of NH_{3} are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached.

$K_{\mathrm{c}}=3.70 \times 10^{8}$
Large $\mathrm{K}_{\mathrm{c}} \Rightarrow$ Favors Products
Initially, a lot of reactant is present.
Shifts strongly to the right (products).
Adds to the pre- existing 0.100 moles
Can't use X ~ 0 assumption.
Nasty math ahead.
Material Shift:
Convert reactant to product

4. Material Shift Required (Large K_{C})

0.250 moles of $\mathrm{N}_{2(\mathrm{~g})}, 0.500$ moles of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.100 moles of NH_{3} are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached.

	$\begin{aligned} & \text { Excess } \\ & \mathrm{N}_{2(\mathrm{~g})} \end{aligned}+$	Limiting $3 \mathrm{H}_{2(\mathrm{~g})}$	$\underset{\text { Material Shift }}{\leftrightarrow} \quad 2 \mathrm{NH}_{3(\mathrm{~g})}$	$\mathrm{K}_{\mathrm{C}}=3.70 \times 10^{8}$
Initial Moles	0.250 moles	0.500 mole	$\rightarrow 0.100 \mathrm{~mole}$	
Material Shift	$-0.166_{66} \mathrm{~mole}$	-0.500 mole	+ 0.333 ${ }_{33} \mathrm{~mole}$	
Final Moles	0.08333 moles	0.000 moles	$0.433{ }_{33}$ moles	
	$0.083_{33} \mathrm{mols} / 1.50 \mathrm{~L}$	0.00 mols 1.50 L	$\mathrm{L} \quad 0.433_{33} \mathrm{mos} / 1.50 \mathrm{~L}$ Since	re is no H_{2} on the reactant side,
In	$\mathrm{O.O55}_{55} \mathrm{M}$	0.000 M	M $0.2888_{88} \mathrm{M}$ the re	tion is shifted as far right as is possible

4. Material Shift Required (Large K_{c})

0.250 moles of $\mathrm{N}_{2(\mathrm{~g})}, 0.500$ moles of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.100 moles of NH_{3} are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached.

| | $\mathrm{N}_{2(\mathrm{~g})}+$ | $3 \mathrm{H}_{2(\mathrm{~g})}$ | $\underset{\text { SHIFT }}{\leftrightarrow}$ | $2 \mathrm{NH}_{3(\mathrm{~g})}$ |
| :--- | :---: | :---: | :---: | :---: |$\quad \mathrm{K}_{\mathrm{c}}=3.70 \times 10^{8}$

$$
\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{\left(0.288_{88} \cdot(2 \mathrm{X})^{2}\right)}{(3 \mathrm{X})^{3}\left(0.055_{55}(+\mathrm{X})\right.} \underset{\mathrm{X}=0}{\frac{\left(0.288_{88}\right)^{2}}{\text { Solve for " } \mathrm{X} \text { " }}}=3.70 \times 10^{8} \quad \mathrm{X}=5.3_{177} \times 10^{-4}
$$

4. Material Shift Required (Large K ${ }_{\mathrm{c}}$)

0.250 moles of $\mathrm{N}_{2(\mathrm{~g})}, 0.500$ moles of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.100 moles of NH_{3} are placed in a 1.50 L closed container. Determine the concentrations of all species after equilibrium is reached.

i. Equilibrium Concentrations
$\left[\mathrm{N}_{2}\right]_{\mathrm{eq}}=0.055_{02}+\mathrm{X}=0.055_{55} \mathrm{M}$
$\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=0.00+3 \mathrm{X}=1.59_{53} \times 10^{-3} \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]_{\text {eq }}=0.288_{8}-2 \mathrm{X}=0.287_{73} \mathrm{M}$
...most of material shifted product remains.
...only small changes to reactant amounts
ii. 5\% check

Most Critical: ($0.055+\mathrm{X})$
$\frac{\mathrm{X}}{0.055} \times 100=1 \%$
$1 \%<5 \%$
iii. Equilibrium Check
$\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
$\left(0.287_{73}\right)^{2}$
$\left(0.055_{55}\right)\left(1.59_{53} \times 10^{-3}\right)^{3}$
$=3.67 \times 10^{8}=K_{C}$

