- 1. Direction: Right (products) or Left (reactants)
- 2. Degree:
 - a. Strongly: Large changes in Product and Reactant amounts
 - b. Weakly: Small changes in Product and Reactant amounts

Favors

Reactants!

$$K_{\rm C} = 1.67 \times 10^{-7}$$

ŀ

Equilibrium Requires non-zero Products and Reactants

Equilibrium must shift in direction of zeros.

Slight shift right required since Kc is very small (favors reactants)

Reaction shifts *slightly* to the right

Favors

Reactants!

- 1. Direction: Right (products) or Left (reactants)
- 2. Degree:
 - a. Strongly: Large changes in Product and Reactant amounts
 - b. Weakly: Small changes in Product and Reactant amounts

Reaction shifts very slightly to the right Very slightly

- 1. Direction: Right (products) or Left (reactants)
- 2. Degree:
 - a. Strongly: Large changes in Product and Reactant amounts
 - b. Weakly: Small changes in Product and Reactant amounts

Reaction shifts slightly to the left

 $K_{\rm C} = 3.70 \times 10^8$

Equilibrium Requires non-zero Products and Reactants

Favors

Products!

Equilibrium must shift in direction of zeros.

Slight shift left required since Kc is very large (favors products)

- 1. Direction: Right (products) or Left (reactants)
- 2. Degree:
 - a. Strongly: Large changes in Product and Reactant amounts
 - b. Weakly: Small changes in Product and Reactant amounts

Reaction shifts *very* slightly to the left

 $K_{\rm c} = 3.70 \times 10^8$

Favors

Products!

Equilibrium Requires non-zero Products and Reactants

Equilibrium must shift in direction of zeros.

Slight shift left required since K_c is very large (favors products) and H_2 is given a "head start".

Less N₂ will be required at equilibrium.

Whenever a strong shift can be predicted A material shift is recommended before I.C.E.