Exam \#1

Name
Minneapolis Community and Technical College C1152 Fall 2023 ...Boraas

Directions:

- Write your name at the top of this exam.
- Record your answer to each multiple choice question in the space provided at left.
- You can write on this exam booklet. Additional scratch paper is available on request.
- Return this exam and all materials with your answer sheet. Failure to do so will result in a zero for the exam.
- You will have 3 hours to complete the exam. Sharing of calculators is not allowed.
- Bathroom trips are of course allowed. 1 person at a time.

1. \qquad Choose the aqueous solution with the lowest freezing point temperature.
a. $1.3 m \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
b. $1.3 m \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c. $1.3 \mathrm{~m} \mathrm{MgI}_{2}$
d. 1.3 m KCl
e. $1.3 \mathrm{~m} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
2. \qquad 15.0 g of KCl is added to $100 . \mathrm{g}$ of water at $30^{\circ} \mathrm{C}$ and then thoroughly stirred with no additional special treatment. Which of the following statements is correct?
a. ... the solution is unsaturated and no solid precipitate is observed.
b. ... the solution is saturated and solid precipitate is observed.
c. ... the solution is saturated and no solid precipitate is observed
d. ... the solution is unsaturated and solid precipitate is observed.

3. \qquad Calculate the mass of oxygen (in mg) dissolved in a 5.00 L bucket of water exposed to a pressure of 1.13 atm of air.

Useful information: $\quad \mathbf{X o z}_{\mathbf{o}}=\mathbf{0 . 2 1}$

$$
\mathrm{k}_{\mathrm{H}}=1.3 \times 10^{-3} \mathrm{M} / \mathrm{atm}
$$

a. 49.4 mg
b. 23.5 mg
c. 9.87 mg
d. 27.3 mg
e. 13.7 mg
4. \qquad A solution is prepared by dissolving 98.6 g of NaCl in enough water to form an 875 mL solution. Calculate the NaCl mass $\%$ if the density of the solution is $1.06 \mathrm{~g} / \mathrm{mL}$.
a. 11.3%
b. 10.6%
c. 9.4%
d. 12.7%
e. 11.9%
5. \qquad How many grams of NaOH are dissolved in 3.00 L of a 0.390 M solution?
a. $0.13 \mathrm{~g}_{\mathrm{NaOH}}$
b. $1.17 \mathrm{~g}_{\mathrm{NaOH}}$
c. $15.6 \mathrm{~g}_{\mathrm{NaOH}}$
d. $46.8 \mathrm{~g}_{\mathrm{NaOH}}$
e. $110.54 \mathrm{~g}_{\mathrm{NaOH}}$
f. $1.24 \mathrm{~kg}_{\mathrm{NaOH}}$
6. \qquad How many milliliters of additional distilled water are required to dilute $500 . \mathrm{mL}$ of a 0.320 M acid solution to a concentration of 0.150 M ?
a. 723 mL
b. 85.6 mL
c. 566 mL
d. 643 mL
e. 1070 mL
7. \qquad When calcium chloride is dissolved in distilled water, the temperature of the solution that forms increases. Which of the following is true?
a. ... the heat of hydration contributes less to solution formation than the lattice energy requirements
b. ... the heat of hydration contributes more to the solution formation than the lattice energy requirements
c. ... the heat of hydration contributes equally to solution formation and precipitation.
d. ... the heat of hydration is a positive value for this process.
e. ... the solution formation process is endothermic
8. \qquad Which of the following statements is TRUE?
a. In general, the solubility of a solid in water decreases with increasing temperature.
b. In general, the solubility of a gas in water decreases with increasing temperature.
c. The solubility of a gas in water usually increases with decreasing pressure.
d. The solubility of an ionic solid in water decreases with increasing temperature.
e. None of the above statements are true.
9. \qquad Which of the following is a reasonable Van't Hoff factor for a very dilute $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution?
a. $\quad i=1.50$
b. $\mathrm{i}=1.90$
c. 2.30
d. 2.98
e. 3.08
f. 3.35
10. \qquad As the concentration of a solution increases, which of the following is true?
a. Vapor pressure increases
b. Vapor pressure increases,
c. Vapor pressure decreases,
d. Vapor pressure decreases,
e. Vapor pressure increases,
boiling point temperature decreases boiling point temperature increases boiling point temperature decreases boiling point temperature increases boiling point temperature increases
freezing point temperature increases freezing point temperature increases freezing point temperature decreases freezing point temperature decreases freezing point temperature decreases
11. \qquad Consider the following chemical reaction:

$$
\mathbf{X}_{(\mathbf{g})}+\mathbf{Y}_{(\mathrm{g})}+\mathbf{Z}_{(\mathrm{g})} \rightarrow \mathbf{2} \mathbf{M}_{(\mathrm{g})}+\mathbf{2} \mathbf{N}_{(\mathrm{g})}
$$

If the reaction is second order in \mathbf{X}, first order in \mathbf{Y}, and third order overall ...
...... by what factor does the rate of reaction increase if the concentrations of all reactants are doubled?
a. $2 \times$
b. $4 \times$
c. $6 \times$
d. $8 \times$
e. $12 \times$
f. $24 \times$
12. \qquad The graph at right shows how the reactant B_{2} concentration changes for the reaction below:

$$
A_{2(\mathrm{~g})}+3 \mathrm{~B}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{C}_{(\mathrm{g})}
$$

At what rate is the product " C " being produced at $t=30$ seconds? ...closest answer please.
a. $1.12 \mathrm{M} / \mathrm{s}$
b. $1.69 \mathrm{M} / \mathrm{s}$
c. $0.75 \mathrm{M} / \mathrm{s}$
d. $0.89 \mathrm{M} / \mathrm{s}$
e. $0.59 \mathrm{M} / \mathrm{s}$
f. $1.33 \mathrm{M} / \mathrm{s}$

13. \qquad Predict the rate law equation for the following Type I mechanism.
Overall: $\mathrm{A}+2 \mathrm{~B}+\mathrm{D} \rightarrow 2 \mathrm{E}$

Mechanism

$\mathrm{A}+2 \mathrm{~B}$	\rightarrow	2 C	slow
$2 \mathrm{C}+\mathrm{D}$	\rightarrow	2 E	fast

a. Rate $=k[A][B]$
b. Rate $=k[A][B]^{2}$
c. Rate $=\mathrm{k}[\mathrm{C}]^{2}[\mathrm{D}]$
d. Rate $=k[A][B]^{2}[D]$
e. Rate $=k[A][B][D]^{2}$
14. \qquad Which of the following reactions would you expect to have the smallest collisional frequency factor "A"?
a. $\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \quad \rightarrow \mathrm{C}_{(\mathrm{g})}$
b. $\mathrm{AB}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})} \quad \rightarrow \mathrm{AC}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})}$
c. $\mathrm{AB}_{(\mathrm{g})}+\mathrm{CD}_{(\mathrm{g})} \quad \rightarrow \mathrm{AC}_{(\mathrm{g})}+\mathrm{BD}_{(\mathrm{g})}$
d. $\mathrm{ABC}_{(\mathrm{g})}+\mathrm{DFG}_{(\mathrm{g})} \quad \rightarrow \mathrm{ABD}_{(\mathrm{g})}+\mathrm{CFG}_{(\mathrm{g})}$
15. \qquad Examine the reaction profile at right and determine $\Delta \mathrm{H}_{\mathrm{rxn}}$.
a. $+80 \mathrm{~kJ} / \mathrm{mol}$
b. $-80 \mathrm{~kJ} / \mathrm{mol}$
c. $+150 \mathrm{~kJ} / \mathrm{mol}$
d. $-150 \mathrm{~kJ} / \mathrm{mol}$
e. $+70 \mathrm{~kJ} / \mathrm{mol}$
f. $-70 \mathrm{~kJ} / \mathrm{mol}$
16. \qquad A reaction is found to have an activation energy of $108 \mathrm{~kJ} / \mathrm{mol}$.

If the rate constant for this reaction is $4.60 \times 10^{-6} \mathrm{~s}^{-1}$ at 275 K ,
 what is the rate constant at 366 K ?
a. $12 \mathrm{~s}^{-1}$
b. $1.7 \mathrm{~s}^{-1}$
c. $0.58 \mathrm{~s}^{-1}$
d. $5.4 \times 10^{-5} \mathrm{~s}^{-1}$
e. $1.9 \times 10^{-4} \mathrm{~s}^{-1}$
17. \qquad Which of the following will not increase the rate of a reaction?
a. Using a catalyst
b. Proper mixing
c. Increasing temperatures
d. Increasing reactant concentrations
e. Increasing the reaction container's volume
18. \qquad How will the equilibrium below shift if the total volume is increased?
$2 \mathrm{C}_{2(\mathrm{~g})}+\mathrm{AB}_{2(\mathrm{l})} \leftrightarrow 2 \mathrm{D}_{2(\mathrm{~g})}$
a. The reaction shifts left with increases in volume
b. The reaction doesn't shift left or right with increases in volume
c. The reaction shifts right increases in volume.
19. \qquad An equilibrium reaction takes place within a test tube.

When the test tube is placed in a hot water bath, the solution turns from Yellow to Blue.

$$
\begin{array}{lll}
2 \mathrm{~A}+\mathrm{B} & \leftrightarrow & \mathrm{C}+\mathrm{D} \\
\text { Blue } & & \text { Yellow }
\end{array}
$$

We conclude that the reaction is ... a. exothermic b. endothermic c. isothermic d. superthermic
20. \qquad Examine the following chemical equilibrium and initial concentrations:

	A	+	2 B	\leftrightarrow	C	+
initial	0.00 M		2.00 M		0.50 M	0.30 M

Which of the following statements is true?
a. The reaction shifts left and the $x=0$ assumption is valid
b. The reaction shifts right and the $x=0$ assumption is valid
c. The reaction shifts left and the $x=0$ assumption is NOT valid
d. The reaction shifts right and the $\mathrm{x}=0$ assumption is NOT valid
21. \qquad Express the equilibrium constant for the following reaction.

$$
\begin{array}{r}
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \\
\text { a. } \mathrm{K}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{1 / 3}}{\left[\mathrm{NH}_{3}\right]^{1 / 2}}
\end{array} \quad \text { b. } \mathrm{K}=\frac{\left[\mathrm{NH}_{3}\right]^{6}}{\left[\mathrm{~N}_{2}\right]^{3}\left[\mathrm{H}_{2}\right]^{9}} \quad \text { c. } \mathrm{K}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \quad \text { d. } \mathrm{K}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}} \quad \text { e. } \mathrm{K}=\frac{\left[\mathrm{NH}_{3}\right]^{1 / 2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{1 / 3}}
$$

22. \qquad The equilibrium constant is given for one of the reactions below.
Determine the value of the missing equilibrium constant.
$2 \mathrm{HD}_{(\mathrm{g})}$

$$
\rightleftharpoons \quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{D}_{2(\mathrm{~g})}
$$

$$
\mathrm{K}_{\mathrm{c}}=0.28
$$

$2 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{D}_{2(\mathrm{~g})}$
$\rightleftharpoons \quad 4 \mathrm{HD}_{(\mathrm{g})}$
$\mathrm{K}_{\mathrm{c}}=$?
a. 7.8×10^{-2}
b. 3.6
c. 0.53
d. 13
e. 1.9
23. \qquad Determine the value of K_{p} for the following reaction if the equilibrium pressures are as follows:

$$
\mathrm{P}(\mathrm{CO})_{\mathrm{eq}}=6.8 \times 10^{-11} \mathrm{~atm} \quad \mathrm{P}\left(\mathrm{O}_{2}\right)_{\mathrm{eq}}=1.3 \times 10^{-3} \mathrm{~atm} \quad \mathrm{P}\left(\mathrm{CO}_{2}\right)_{\mathrm{eq}}=0.041 \mathrm{~atm}
$$

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

a. $K_{p}=3.6 \times 10^{-21}$
b. $\mathrm{K}_{\mathrm{p}}=2.8 \times 10^{20}$
c. $K_{p}=4.6 \times 10^{11}$
d. $K_{p}=2.2 \times 10^{-12}$
e. $K_{p}=3.6 \times 10^{-15}$
24. \qquad Which of the following statements is TRUE?
a. If $\mathrm{Q}<\mathrm{K}$, it means the reverse reaction will proceed to form more reactants.
b. If $\mathrm{Q}>\mathrm{K}$, it means the forward reaction will proceed to form more products.
c. If $Q=K$, it means the reaction is at equilibrium.
d. All of the above are true.
e. None of the above are true.
25. \qquad Which of the following is a STRONG base?
a. Cl^{-}
b. NH_{3}
c. $\mathrm{CH}_{3} \mathrm{OH}$
d. $\mathrm{NO}_{3}{ }^{-}$
e. KOH
26. \qquad Which of the following correctly demonstrates the NaHCO_{3} basic equilibrium?

a. $\mathrm{HCO}_{3^{-}(\mathrm{aq})}$	+	$\mathrm{H}_{(\mathrm{aq})}^{+}$	\leftrightarrow	$\mathrm{H}_{2} \mathrm{CO}_{3}^{-2}{ }_{(\mathrm{aq})}$		
b. $\mathrm{HCO}_{3^{-}(\mathrm{aq})}^{-}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	\leftrightarrow	$\mathrm{CO}_{3}^{-2}{ }_{(\mathrm{aq})}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
c. $\mathrm{HCO}_{3^{-}(\mathrm{aq})}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	\leftrightarrow	$\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$	+	$\mathrm{OH}_{(\mathrm{aq})}$
d. $\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$	+	$\mathrm{OH}_{(\mathrm{aq})}^{-}$	\leftrightarrow	$\mathrm{HCO}_{3^{-}(\mathrm{aq})}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
e. $\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	\leftrightarrow	$\mathrm{HCO}_{3^{-}(\mathrm{aq})}$	+	$\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}$

27. \qquad Consider the following equilibrium and identify the strong base.
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$

$\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}$
$K_{a}=1.76 \times 10^{-5}$
a. $\mathrm{CH}_{3} \mathrm{COOH}$
b. $\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{H}_{3} \mathrm{O}^{+}$
d. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
28. \qquad Calculate the molar concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$of a solution whose $\mathrm{pOH}=4.33$
a. $2.1 \times 10^{-10} \mathrm{M}$
b. $4.7 \times 10^{-5} \mathrm{M}$
c. $1.00 \times 10^{-14} \mathrm{M}$
d. $7.6 \times 10^{-7} \mathrm{M}$
29. \qquad Strong acids are rarely found in solution with their hydrogen ions still attached.
a. True
b. False
30. \qquad Referring to the diagram at right, what letter identifies the Lewis base?

Show all work neatly for full credit. Answers must be circled, have correct significant figures and units.
31. (5 pts) Initially, $0.500 \mathrm{~mol}_{\mathrm{A}}, 0.500 \mathrm{~mol}_{\mathrm{B}}$ and $1.00 \mathrm{~mol}_{\mathrm{C}}$ are placed in an empty 6.50 liter container where the following equilibrium reaction takes place:

$$
2 \mathbf{A}_{(\mathrm{g})}+\mathbf{3} \mathbf{B}_{(\mathrm{g})} \leftrightarrow \mathbf{C}_{(\mathrm{g})} \quad \mathrm{K}_{\mathrm{c}}=4.15 \times 10^{16}
$$

Determine the equilibrium concentrations of all species and check your work.

Show all work neatly for full credit. Answers must be circled, have correct significant figures and units.
32. (5 pts) The rate constant for the first order reaction $2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$ is $2.79 \mathrm{~min}^{-1}$ at $48^{\circ} \mathrm{C}$.

If the initial concentration of NO_{2} is 9.80 M , determine the following:
a. The reaction's half-life in minutes.
b. The time in minutes required for the NO_{2} concentration to reach $\mathbf{0 . 1 2 0} \mathrm{M}$
c. The time in minutes required for $\mathbf{9 0 \%}$ of the $\mathrm{NO}_{\mathbf{2}}$ to have decomposed.

Show all work neatly for full credit. Answers must be circled, have correct significant figures and units.
33. (5 pts) Examine the following weak acid ICE table and determine the following six quantities:
a. pH
b. $[\mathrm{HA}]_{\mathrm{eq}}$
c. K_{a} for the weak acid
d. K_{b} for the conjugate base
e. \% ionization

	$\mathrm{HA}_{(\text {(aq) }}$	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	\leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$	$+\mathbf{A}^{-}{ }_{\text {(aq) }}$
I	$\mathbf{0 . 1 0 0 ~ M ~}$	\sim		0 M	0 M
C					
E				1.056×10^{-5}	

Show all work neatly for full credit. Answers must be circled, have correct significant figures and units.
34. (5 pts) A solution made by dissolving 7.25 g of a nonvolatile, molecular solid in 120.0 mL of distilled water. The solution is found to experimentally freeze at $-4.89^{\circ} \mathrm{C}$ at 760 mm Hg .

Useful Information: Water: $\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m} \quad \mathrm{K}_{\mathrm{b}}=0.512^{\circ} \mathrm{C} / \mathrm{m} \quad \mathrm{D}=1.00 \mathrm{~g} / \mathrm{mL}$
a. What is the approximate molecular weight of the substance?
b. What is the boiling point temperature of the solution?
35. (Bonus 1 pt) What is required for a molecular collision to be "effective?"
\qquad
\qquad
\qquad
\qquad
\qquad
36. (Bonus 1 pt) Give an example of a multi-step process in your life. (List steps)

Clearly identify the rate limiting step and explain in detail what makes it rate limiting.
\qquad
\qquad
\qquad
\qquad
\qquad
38. (Bonus 1 pt) Explain why the following equilibrium problem requires a material shift:

	$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$	\leftrightarrow	$\mathbf{2} \mathbf{N O}_{(\mathrm{g})}$	$\mathbf{K}_{\mathbf{c}}=\mathbf{6 . 0 0} \times 10^{-31}$
Initial	2.00 M	2.00 M	0.500 M	

