.






Monday April 1    Day 53

Introduction to Gibbs Free Energy: What is it?
 

Textbook Reading

18.6 Gibbs Energy



Course Lectures

17.2 pdf   Video* Chemical Free Energy


Objectives:

1.   Identify positive and negative Gibbs
      energy values with spontaneous and
      non-spontaneous processes correctly.

2.   Associate  Gibbs energy changes
      with energy input and output for
      non-spontaneous and spontaneous
      processes respectively.

3.   Use Gibbs energy and thermodynamic
      efficiencies to determine maxiumum
      available work and waste heat values.

Introduction to Gibbs Free Energy



Homework Problems


46.1.  Gibbs energy is the maximum energy available to do meaningful work in frictionless
     and reversible situations.  In reality, the amount of work available is a fraction of the
     Gibbs energy we might calculate for a reaction.

    Consider the combustion of methane given by the following chemical equation and
ΔG value.

                  CH4(g)     +    2 O2(g)    
→  2 H2O(g)     +     CO2(g)     ΔG =   -900.8 kJ/mol

     a.   Is this reaction spontaneous?  How do you know?

     b.   A methane powered delivery truck carries 120. gallons of methane (CH4 ...instead of gasoline).
           If 1 gallon of methane weighs  3.54 pounds, determine the total Gibbs energy available
           for the combustion of all 120. gallons of fuel.  (Hint:  Use
ΔG above and watch your units)

     c.   Your textbook claims that internal combustion engines are only ~30 % efficient at best.
            Use this figure to determine the maximum amount of  useable energy available from the
            the combustion of 120. gallons of methane fuel.

     d.   How many kJ of heat energy are released as the truck consumes all 120 gallons of fuel?

     e.   If all of the waste heat was used to boil water, how many pounds of water could
           be vaporized?   (Useful Information:  For water at 100 oC, Hvap = 40.7 kJ/mol)

46.2   Consider the following situation:

                          3 MnO2(s)    
→   Mn3O4(s)     +     O2(g)         ΔG =   115 kJ/mol

     a.
Is this reaction spontaneous?  How do you know?

     b. As a non-spontaneous reaction, energy must be delivered to the reaction to
         make it happen.  Ideally, how much energy would be required to transform 6 moles of
MnO2(s)
          
into products?

     c. If we're able to deliever energy to the reaction with 45% efficiency, how much energy
         would we actually need to transform
6 moles of MnO2(s)  into products?

     d. Rewrite the chemical reaction and
ΔG  above in their spontaneous form.

46.3 Which of the following statements is NOT correct?

     a. When
ΔG for a reaction is negative, the reaction is spontaneous
     b.
When ΔG for a reaction is positive, the reaction is non-spontaneous
     c.
When ΔG for a reaction is zero, the reaction is at equilibrium
     d. All of the above are correct.



Click and drag the region below for correct answers

46.1  a. The reaction is spontaneous because it experiences a drop in Gibbs Energy.
             That is,
ΔG < 0 (negative)

         b.   1.0819 x 107 kJ is ideally the amount of energy available from the fuel.

         c.   3.2458 x 106 kJ more likely available given the inefficiencies of the truck's engine.

         d.  The other 70% is released as heat:  7.5736 x 107 kJ

         e.  7,390 pounds of water could be vaporized!

46.2  a. This reacction is non-spontaneous as written since it represents and increase in
              Gibbs Energy 
That is, ΔG > 0 (positive)

           b.  Ideally, 3 moles of 
MnO2(s)  would require 115kJ of energy.  Therefore,
                6 moles of
MnO2(s)  will require 230. kJ of energy

           c.  511 kJ would be required as our energy delivery is only 45% efficient.
 
           d. 
Mn3O4(s)     +     O2(g)       3 MnO2(s)       ΔG =   -115 kJ/mol

46.3  d.  All of the above are correct
.
              
ΔG  is used to identify spontaneous processes (ΔG < 0) from
                    non-spontaneous process
(ΔG > 0).

               This begs the question: What's the significance is
ΔG = 0?
                    In this case the reaction neither produces nore requires energy to take place.
                    In fact, the reaction is visually static even though both forward and reverse reactions
                    are taking place.  In otherwords, when
ΔG = 0 , we have equilibrium!  :)



.
.

Tuesday April 2, 2024   Day 54

Determining Gibbs Free Energy Changes
 

Textbook Readings

18.6 Gibbs Energy


Course Lectures

19.1 pdf   Video* Gibbs Free Energy

Gibbs Free Energy
Gibbs Free Energy
Using Gibbs Free Energy
.
Using Gibbs Free Energy
Objectives

1.   Know the significance of the phrase "Goldfish Are Horrible Without Tartar Sauce"

2.   Use the
ΔG = ΔH  - TΔS  to suggest combinations of entropy and enthalpy that give rise to
      spontaneous and non-spontaneous reactions.

3.  Describe the temperature dependance of
ΔG = ΔH  - TΔS and how it affects
     reaction spontaneity.


4.  Calculate
ΔH  &  ΔS for chemical reactions from standard thermodynamic data and then
       determine
ΔG for the reaction at specific temperatures.

5.    Determine threshold temperatures for endo and exothermic reactions.


Homework Problems.

47.1.      Consider the following reaction and its thermodynamic information: 

                                       NH4NO3(s)                 →      NH4+(aq)     +     NO3-(aq)
         
ΔHfo (kJ/mol)        -365.56                                            -132.51                         -205.0
         
Sfo (J/mol-K)           151.08                                               113.4                          146.4

          a.  Calculate
ΔHrxn for this reaction using ΔHrxn =  (Σnprod* ΔHfo prod )    -  (Σnreac* ΔHfo reac )

          b.  
Calculate ΔSrxn for this reaction using ΔSrxn =  (Σnprod* Sfo prod )    -  (Σnreac* Sfo reac )

          c.  
Use the ΔG = ΔH  - TΔS equation and your results from parts "a" and "b" to determine
               
ΔG (kJ/mol) for this reaction at 25oC.

          d.  Is this reaction spontaneous or non-spontaneous as written.

          e.  If the reaction is spontanteous, is it entropy driven, enthalpy driven or both?

47.2   Determine
ΔG for the following reaction given the thermodynamic data provided and
           say whether the reaction is spontaneous as written or not.

                                   2 N2(g)     +     3 O2(g)    
→     2N2O3(g)

                  ΔHfo (kJ/mol)       0                               0                           83.72
                 
Sfo (J/mol-K)     191.5                        205.0                      312.2

47.3  Exothermic reactions with decreasing entropy  (i. e ΔH < 0 & ΔS < 0) will only be
         spontanteous at low tem
peratures (cooler environments facitate heat transfer from
         the reaction into the surroundings).

         Endothermic reactions with increasing  entropy  (i. e ΔH > 0 & ΔS > 0) will only be
         spontanteous at high tem
peratures (warmer environments act as a heat source for
          the endothermic heat reactant).

         In each if these two cases, there is a "threshold temperature" that defines the temperature
         ranges for spontaneity.  

          This threshold temperature can be determined by setting
ΔG = 0 and solving for T:

                                                   
ΔG =  0 =   ΔH  - TΔS

          Consider the following reaction and determine the range of temperatures (oC)
          required for the reaction to be spontaneous.

                  CH4(g)     +     N2(g)     +     163.8 kJ 
→   HCN(g)     +     NH3(g)    ΔSrxn = 16.1 J/mol-K
  
47.4  Consider the following and determine the range of temperatures (
oC)  required for the
          reaction to be spontaneous

                                                        SBr4(g)     →    S(g)    +     2 Br2(l)

                     Given:    ΔHo = +115 kJ                 .....and.....          ΔSo = +125 J/K




Click and drag the region below for correct answers

47.1   c. 
ΔG = -4.360 kJ/mol   
          d.  Reaction is spontaneous as written
          e.  Reaction is endothermic :(   
               Entropy increases for this reaction :) and so is "entropy driven"

47.2   ΔG = +278.8 kJ/mol    Reaction is non spontaneous and requires work to occur.

47.3   This reaction will be spontaneous at temperatures above 9.9 x 103 oC

47.4  This endothermic reaction is spontaneous at temperatures above  647 K
.
.

Wednesday April 3, 2024  Day 55

Determining Gibbs Free Energy Changes from Standard Gibbs Energies


Textbook Readings

18.6 Gibbs Energy


Course Lectures

19.1 pdf   Video* Gibbs Free Energy



Objectives

1. Calculate
ΔGorxn   using standard
     thermodynamic
ΔGof values.

2.  Interpret
ΔGorxn   values to determine
     reaction spontaneity.
Gibbs Free Energy


Homework Problems

     As you already know,
ΔGorxn can be calculated via the equation:

                                           
ΔGorxn  =    ΔHorxn     -         T   ΔSorxn    
                                                                 Goldfish      are      Horrible      without    Tartar   Sauce

    However, standard free energies have been tabulated in thermodynamic tables making
    the determination of
ΔGorxn   much simpler under standard conditions:

                            ΔGorxn   =  Σ nΔGoproducts   -   Σ nΔGoreactants

     Note that and are determined in exactly the same way.

     In the problems below, use the provided information or thermodynamic tables to determine
ΔGorxn.



48.1  Consider the following reaction and Gibbs energy information:

                                 2 C2H2(g)     +     5 O2(g) 
→   4 CO2(g)     +     2 H2O(l)
       ΔGfo (kJ/mol)     209.2                              0                       -394.4                        -237.2

       a.   Determine ΔGorxn for the reaction. 
       b.   Is the reaction spontaneous as written? 
             If not, rewrite the reaction in its spontaneous form.

48.2  
Consider the following reaction and Gibbs energy information:

                        
CaCl2(s)   +   CO2(g)   +  H2O(l)  CaCO3(s)  +  2HCl(g)    
        ΔGfo (kJ/mol)   -748.8                   -394.4              -237.2                 -1129.1              -95.3


       a.   Determine ΔGorxn for the reaction. 
       b.  Is the reaction spontaneous as written? 
             If not, rewrite the reaction in its spontaneous form.


48.3   Consider the following reaction:

              3N2(g)    +    4 H2O(g)  
→  N2O4(g)     +    2N2H4(l)

       a. Use the Thermodynamic Tables to determine
ΔGorxn for the reaction. 
       b.  Is the reaction spontaneous as written? 
            If not, rewrite the reaction in its spontaneous form.

48.4  As we know, when 
ΔGorxn < 0 (negative), the forward reaction is spontaneous as written.
   
         Additionally, when 
ΔGorxn > 0 (positive), the forward reaction is nonspontaneous as written
         BUT the reverse reaction IS spontaneous.

          Thus,
ΔGorxn = 0 defines the line between reaction spontaneity and non-spontaneity.

          What chemical situation is defined by
ΔGorxn = 0?


48.5   A reaction is known to be spontaneous, but only at low temperatures.
          What can be said about
ΔGorxn   , ΔHorxn , and ΔSorxn ?

Click and drag the region below for correct answers

48.1   a.  
ΔGorxn    =  -2470.4 kJ/mol               b.  Reaction is spontaneous as written.

48.2   a.  
ΔGorxn    =    +60.7 kJ/mol                b.  Reaction is NOT spontaneous as written

      Spontaneous:  CaCO3(s)  +  2HCl(g) → CaCl2(s) + CO2(g)  + H2O(l)   
ΔGorxn  =  -60.7 kJ/mol

48.3     
ΔGorxn    =    +1312.8 kJ/mol                b.  Reaction is NOT spontaneous as written

            Spontaneous:    
N2O4(g)   +  2N2H4(l)    →  3N2(g)    +    4 H2O(g)       ΔGorxn = -1312.8 kJ/mol

48.4   Equilibrium.  When
ΔGorxn = 0 for a chemical reaction it is in equilibrium with both
           forward and reverse reactions taking place simultaneously and with the same rate.

48.5   At low temperatures, ΔGorxn   < 0 (negative) but at high temperatures   ΔGorxn   > 0 (positive)
         
Regardles, this must be always be true for this reaction:
                                 Δ
Horxn  < 0 (negative)                   ΔSorxn  <  0 (negative)
     
.
.

Thursday April 4, 2024     Day 56

Non-Standard Gibbs Energies


Textbook Readings

18.9: Gibbs Energy Change for
           Non-Standard States


Course Lectures

19.3 pdf   Video Non Standard Gibbs Energy


Free Energy Changes, Nonstandard Conditions

Free Energy Changes, Nonstandard Conditions
Calculating Free Energy: Non-Standard Pressures
Calculating Free Energy: Non-Standard Pressures

Objectives

1. Calculate
ΔG⁰rxn using tabulated
    thermodynamic information.

2.  Formulate the reaction quotient (Law
     of Mass Action) for chemical reactions

3.  Differentiate between standard conditions
     (1 M, 1 atm, and 25oC) from non-standard
     conditions.

4.  Calculate
ΔGrxn under non-standard
     conditions using
ΔGrxn, T and Q.
      
Practice Problem:
Free Energy and Nonstandard Conditions



ΔG⁰rxn tells us a lot. 

      Determined either via the "goldfish" equation or by tabulated standard free energies,
          ΔG⁰rxn tells us whether the reaction is spontaneous or not. 

      Also, the
ΔG⁰rxn  value gives us the maximum amount of work we can expect from the
          reaction under perfect conditions ...or...rhe minimum amount of energy required
          to make a non-spontaneous process happen.

      Our thermodynamic tables are formulated only for standard conditions:

                                                  Concentrations:  1.00 M
                                                  Pressures:            1.00 atm
                                                  Temperature:      298.15 Kelvin

      However, most chemical reactions occur under non-standard conditions.  In these cases
          we can calculate
ΔGrxn using the following formulation:

ΔGrxn   =  ΔGrxn      +     RT lnQ

        where...


                  ΔGrxn
is determined from standard thermodynamic tables
                   R         is the the gas law constant 8.314 J/mol-K
                   T         is the temperature (Kelvins)
                   Q        is the reaction quotient obtained via the Law of Mass Action

(Note that the o symbol is used to identify values calculated under standard conditions)

Homework Problems


49.1 Consider the following reaction:

4 NH3(g) + 5 O2(g) → 6 H2O(g) + 4 NO(g)

             a. Use the thermodynamic data tables to calculate ΔG⁰rxn at 298.15 K.

             b. Calculate ΔG
rxn at 298 K for the following mixture of reactants and products:

                                            2.0 atm NH3(g)
                                            1.0 atm O2(g)   
                                            1.5 atm H2O(g)
                                            1.2 atm NO(g)

              c.  Standard conditions would be when all pressures equal to 1 atm.
                   Compare your answers to  "a" and "b". 
                   Which of the two situations is "more" spontaneous?

49.2  Consider the reaction of nitrogen monoxide and chlorine to form nitrosyl chloride:  

2 NO(g) +    Cl2(g)    → 2 NOCl(g)    


              a. Use the
thermodynamic data tables to calculateΔG⁰rxn at 298.15 K.
                                   
ΔG⁰f = 66.2 for NOCl (not shown in table)

              b. Calculate
ΔGrxn at 298 K for for the following mixture of reactants and products:

                                     
       0.40 atm NO
                                             0.50 atm Cl2
                                             0.10 atm NOCl

              c.  Standard conditions would be when all pressures equal to 1 atm.
                   Compare your answers to  "a" and "b". 
                   Which of the two situations is "more" spontaneous?


Click and drag the region below for correct answers

49.1   a.   ΔG⁰rxn  = -955.6 kJ/mol      
          b.  
ΔGrxn    = -954.6 kJ/mol
          c.   Reactions are spontaneous when
ΔGrxn < 0 (negative)
                Reactions are more spontaneous in situations where
ΔGrxn is even MORE negative.
                Being more negative, "a" is the more spontaneous possibility.

49.2    a.   ΔG⁰rxn  = -42.8  kJ/mol       
           b.
  ΔGrxn    = -48.0 kJ/mol
           c.   Reactions are spontaneous when ΔGrxn < 0 (negative)
                Reactions are more spontaneous in situations where
ΔGrxn is even MORE negative.
                Being more negative, "b" is the more spontaneous possibility.





Friday April 5, 2024    Day 57
Gibbs Energy and Equilibrium
 

Textbook Readings

18.9: Gibbs Energy Change for
         Non-Standard States


18.10: Gibbs Energy and Equilibrium



Course Lectures

19.4 pdf   Video Gibbs  Energy and Equilibrium




Gibbs Free Energy and
Equilibrium

Gibbs Free Energy and the
Equilibrium Constant

Objectives

1.  Use standard Gibbs energies to determine equilibrium constants (and vice versa)

2.  Describe how large/small equilibrium constants relate to reaction spontaneity and
     Gibbs energy changes.


 The connection between equilibrium and thermodynamics:

              We know that

                       ΔGrxn   =  ΔGrxn      +     RT lnQ

               and that at equlibrium...

                              ΔGrxn
= 0    and     Q = Keq

               Thus we have

                         0   =  ΔGrxn      +     RT lnKeq

                and upon rearranging:

                     *******      ΔGrxn  =   - RT lnKeq       *******

 WHOO HOO!  
Thermodynamic Gibbs energies can be used to determine equilibrium constants.


Homework Problems



50.1  Nitrogen dioxide, NO2, dimerizes to form nitrogen tetroxide according to the reaction:

 2 NO2 (g)   →   N2O4 (g)  

       a.  Using
the thermodynamic tables  to calculate the standard molar Gibbs energy
             for the reaction, ΔGorxn,   at 298.15 K.

       b.  Use  your 
ΔGorxn  to determine a value for the equilibrium constant, Keq , at 298.15 K.

50.2  For the following reaction ∆Hfo =  -197.8 kJ/mol       and ∆Sfo = -187.9 J/mol K.

         Assume that
∆Hfo and ∆Sfo are independent of temperature and calculate the
         equilibrium constant for this reaction at 262 K.   

2SO2(g) +  O2(g)  →  2SO3(g)

50.3 The solubility product constant (Ksp) of lead(II) iodide is 1.4 × 10-8 at 25°C.  
       Calculate
ΔGorxn  for the dissociation of lead(II) iodide in water. 
       What does this value of 
ΔGorxn  suggest about the spontaneity of this reaction?

PbI2(s)  →     Pb2+(aq)     +     2I(aq)

50.4 The solubility product constant (Ksp) of lead(II) chloride is 1.17 × 10-5 at 25°C.  
       Calculate
ΔGorxn  for the dissociation of lead(II) chloride in water. 
       What does this value of 
ΔGorxn  suggest about the spontaneity of this reaction?

50.5  Identify which of the two lead salts (problems 50.3 and 50.4) are most soluble based
         on their Ksp  values.

         Do the
ΔGorxn  values support your solubility conclusion?


Click and drag the region below for correct answers

50.1      a.  ΔGorxn = -2.80 kJ/mol 
    
             b.  Keq        = 3.09

50.2     
Keq = 4.2 x 1029

50.3     
ΔGorxn+45 kJ/mol    Quite non-spontaneous and favors the solid which isn't very soluble.

50.4     
ΔGorxn +28 kJ/mol    Again, non-spontaneous favoring the reactants (solid)
                                                  which isn't very soluble.

50.5      Both salts are 1:2 salts and a direct comparison of Ksp values let's us determine that
             PbCl2 is a more soluble salt than PbI2.

             The
positive ΔGorxn values indicate both reactions are non-spontaneous.  Hence, both salts
             are considered sparingly soluble.  However, the
ΔGorxn value for PbCl2 is closer to zero
             and is therefore more more spontaneous than PbI2 whose 
ΔGorxn value is further from
             zero.  Thus, PbCl2 is more soluble based on
ΔGorxn considerations.

.
.
.
.