.







Monday April 8, 2024    Day 58
REDOX Review


Textbook Readings

4.9: Oxidation-Reduction Reactions
Course Lectures

20.1 pdf   Video* Oxidation Numbers
20.2 pdf   Video* Oxidation Reduction Rxns



Objectives

1. Determine oxidation states of elements
    appearing in elemental form, as ions and
    in chemical compounds.

2.  Use oxidation states to determine what
     species is oxidized and reduced in chemical
     REDOX reactions.

3.  For oxidized and reduced elements, correctly
     determine the total number of electrons lost
     or gained for the REDOX reaction.

4.  In REDOX settings, identify the oxidizing
       and reducing agents

Introduction to REDOX reactions and Oxidation States
Introduction to REDOX reactions and Oxidation States
 Homework Problems

51.1 Determine the oxidation states of all elements in each of the following:

    a. H2CO3            b. N2              c. Zn(OH)42-            d. NO2-          e. LiH            f. Fe2O3

     g. K+                  h. SO32-          i. H2O2                     j. O2              k. PbO2          l.  MnO4-

51.2 Identify the element being oxidized and reduced in the following reactions.

   a.       Cr        +      Sn4+        →      Cr3+      +     Sn2+

   b.       2 ClO2   +     2 I -           →     2 ClO2  +       I2

   c.        2 As       +     3 Cl2         →     2 AsCl3


   d.      O2   +   4 H+   + 2 Zn              2 H2O   +   2 Zn2+

   e.     6 KOH     +   3Cl2              →  KClO3  +   5 KCl  +   3 H2O

   f.     5 NaClO  +   3 H2O  +   3 I2   →   6 HIO3  + 5 NaCl


51.3  Identify the oxidizing agent and the reducing agent for each of the reactions above.

51.4  For each species identified in 51.2, write the oxidation or reduction as  balanced
          chemical equations that include electrons as products (oxidation) or reactants (reduction)

51.5  All of the above REDOX reactions are properly balanced.

         To be balanced, the TOTAL electrons produced in oxidation must equal the TOTAL
         electrons consumed by the reduction.

         Examine the reactions above and their coefficients/subscripts carefully.
         Determine the TOTAL number of electrons produced and consumed.


Click and drag the region below for correct answers

51.1  a.  H:  +1       O: -2     C: +4
         b.  N1:    0       N2:  0
         c.  Zn: +2      O:-2      H: +1
         d.  N:  +3       O: -2
         e.  Li: +1       H: -1    (Hydrides: Exception to the hydrogen guidelines)
         f.  Fe: +3       O: -2
         g.  K:  +1
         h.  S:  +4        O: -2
         i.  H:  +1        O: -1   (Peroxides:  Exception to oxygen guidelines)
         j.  O:   0          O: 0
         k.  Pb: +4       O: -2
         l.  Mn: +7       O: -2

51.2  a.   Cr+ is oxidized to form Cr3+         Sn4+ is reduced to form Sn2+
         b.    I- is oxidized to form I0                Cl+4 is reduced to form Cl+3
         c.    As0 is oxidized to form As+3         Cl0 is reduced to form Cl-1
         d.    Zn0 is oxidized to form Zn2+         O0 is reduced to form O-2
         e.    Cl0 is oxidized to form Cl5+          Cl0 is reduced to form Cl-1
         f.     I0 is oxidized to form I5+               Cl5+ is reduced to form
Cl-1


51.3   a.  Oxidizing agent:  Sn4+      Reducing agent:   Cr+
          b.  Oxidizing agent:  ClO2     Reducing agent: I-
          c.  Oxidizing agent:  Cl2        Reducing agent: As
          d.  Oxidizing agent: O2          Reducing agent: Zn
          e.  Oxidizing agent:  Cl2         Reducing agent: Cl2
          f.   Oxidizing agent: NaClO3  Reducing agent: I2

          ***Note the entire chemical formula is used when naming oxidizing and reducing agents.
d.   N: +3, O: -2             e.    Li: +1    H: -1       f. Fe: +8/3   O: -2

51.4    a.  Oxidation:   Cr     Cr3+      +   2 e-      
                Reduction:  Sn4+   
+   2 e-    →     Sn2+

           b.  Oxidation:    I-           I0      +   1 e-      
                Reduction:  Cl4+   
+   1 e-    →     Cl3+ 

           c.  Oxidation:    As0           As+3      +   3 e-      
                Reduction:   Cl0   
+   1 e-     →     Cl-1

           d.  Oxidation:    Zn0           Zn+2      +   2 e-      
                Reduction:   O0   
+   2 e-     →     O-2

           e.  Oxidation:    Cl0           Cl+5      +   5 e-      
                Reduction:   Cl0   
+   1 e-     →     Cl-1

           f.  Oxidation:    I0           I+5      +   5 e-      
                Reduction:   Cl+5   
+   6 e-     →     Cl-1  (Danger: Make sure you understand why)+ is being oxidized    Sn4+  is being reduced
 
51.5   a.  2 electron produced by oxidation and 2 electron consumed by reduction
          b.  2 electrons
produced by oxidation and 2 electrons consumed by reduction
          c. 
6 electrons produced by oxidation and 6 electrons consumed by reduction
          d.  4
electrons produced by oxidation and 4 electrons consumed by reduction
          e. 
5 electrons produced by oxidation and 5 electrons consumed by reduction
          f.  
30 electrons produced by oxidation and 30 electrons consumed by reduction. Fe is being oxidized      Hg2+ is being reduced
    c. As is being oxidized      Cl2    is being reduced

3.
a. Cr+ is the reducing agent    Sn4+  is the oxidizing agent
    b. Fe  is the reducing agent      Hg2+ is the oxidizing agent

    c. As  is the reducing agent      Cl2    is the oxidizing agent
.
.

Tuesday April 9, 2024   Day 59
Balancing REDOX Reactions


Textbook Readings

19.2: Balancing REDOX Equations

Course Lectures

20.3 pdf   Video* Balancing REDOX reactions


Balancing REDOX reactions (Acidic)
Balancing REDOX reactions (Acidic)
Balancing REDOX reactions (Basic)
Balancing REDOX reactions (Basic)
Objectives

     1. Correctly separate a REDOX reaction into
½ reactions

     2. Balance ½ reactions with respect to
             a. Other elements
             b. Oxygen (with H2O)
             c.  Hydrogen with H+
             d.  Electrons with e-

     3. Adjust ½ reactions such that electrons gained (reduction) equal electrons lost (oxidation)

     4.  Combine ½ reactions and simplify

     5.  Adjust with OH- for a basic environment as needed.


Homework Problems


52.1   a.   For the following unbalanced REDOX reaction write the two unbalanced ½ cell reaction

                     HCOOH + MnO4-   →    CO2 + Mn2+      (Basic solution)
           
           b.  Balance the ½ cell reactions from part "a" with respect to all elements except
                oxygen and hydrogen.

           c.  Balance the ½ cell reaction from part "b" with respect to oxygen

           d.  Balance the ½cell reactions from part "c" with respect to hydrogen

           e.  Balance the ½ cell reactions from part "d" with respect to electrons

           f.   Multiply both ½ cell reactions as needed to get the electrons on the product
                 side of the oxidation reaction to equal the number of electrons on the reactant
                 side of the reduction reaction.

          g.  Combine the two, balanced ½ reactions and cancel terms as necessary.
               This is the balanced "acidic" form of this reaction.

          h.  To balance as a "basic" reaction, add OH- to both sides of the reaction to nuetralize
                the H+ ions that appear.  Their reaction forms water.

                Cancel
product and reactant H2O as needed
               
This is the balanced "basic " form of this reaction.

51.2   Balance the following three REDOX reactions:

                a. ClO2-1                       →  ClO2 + Cl-1                  (Acidic solution)
                b. Cr(OH)3 + Br2         →  CrO42- + Br-1               (Basic Solution)
                c. H2O2 +  
ClO2           →     O2   + ClO2-             (Basic Solution)

Answers:  Click and drag in the space below


52.1 a.     MnO4-  
→     Mn2+                                      &           HCOOH →     CO2      

        b.    
MnO4-   →     Mn2+                                      &           HCOOH →     CO2

        c.     MnO4-   →     Mn2+  + 4H2O                       &           HCOOH →     CO2

        d.    8 H+   +  MnO4-   →    Mn2+  + 4H2O          &          HCOOH →     CO2    +   2 H+ 

        e.    8 H+   +  MnO4-  +  5e- →    Mn2+  + 4H2O    &           HCOOH →     CO2    +   2 H+  +   2e-

        f.    8 H+   +  MnO4-  +  5e- →    Mn2+  + 4H2O     &          HCOOH →     CO2    +   2 H+  +   2e-
                             multiply by X2                                                                       Multiply X5


              16
H+   +  2 MnO4-  +  10e- →   2 Mn2+  + 8 H2O
                                                       
                                                                                        &    
5 HCOOH   →    5 CO2    +   10 H+  +   10e-

        g. 
6 H+ 2 MnO4-       +  5 HCOOH   →   2 Mn2+  + 8 H2O   +   5 CO2 

        h. 
6 H+ 2 MnO4-       +  5 HCOOH   →   2 Mn2+  + 8 H2O   +   5 CO2 
                          add 6 OH-                                                   add 6 OH-

            6 H2 2 MnO4-       +  5 HCOOH   →   2 Mn2+  + 8 H2O   +   5 CO2  + 6 OH-
                                                                         Cancel H2O                                            

            2 MnO4-       +  5 HCOOH   →   2 Mn2+  + 2 H2O   +   5 CO2  + 6 OH-
                                                                         That's it!  :)


 
51.2              a. 5 ClO2- + 4 H+                           →   4 ClO2 + Cl- + 2 H2O

                     b. 10 OH- + 2 Cr(OH)3 + 3 Br2     → 2 CrO42- + 8 H2O + 6 Br-

                     c.
H2O2    +    2ClO2    +    2 OH-      →    2 ClO2-      +     O2     +     2 H2O

.
.

Wednesday April 10, 2024    Day 60
Reaction Spontaneity and Electrochemical Cells




Textbook Readings

19.3: Voltaic Cells- Generating Electricity
         from Spontaneous Chemical Reactions

P2:   Table of Standard Reduction Potentials
           NOTE: Oxidation is ABOVE reduction in this table.

Course Lectures

21.1 pdf   Video* Spontaneous REDOX reactions

21.2 pdf   Video* Electrochemical Cells: Intro

Objectives

1.  Determine spontaneous and non-spontaneous
     versions of REDOX reactions using the table
     of Standard Reduction Potentials.

2.  Given a galvanic cell, identify the oxidized
     and reduced species.  Also identify Anode
     Cathode and describe all operational aspects
     of the cell.

Introduction to Galvanic Cells
Introduction to Galvanic Cells
Homework Problems

53.1  The table of Standard Reduction Potentials
          is a list of
½ cell reactions in an order
         that let's us determine how to write
         spontaneous REDOX reactions.

           NOTE: The organization of the Standard Reduction
                       tables used on this website are the top/bottom
                      reverse of those refered to in my lecture videos.
                    
                     Oxidation is ABOVE reduction in this table

                   
     
Reduction Potential table

        
In the abbreviated tableabove, both  copper and zinc are identified.  Because
         copper appears below zinc in the table, the spontaneous reaction will be one where
        copper is reduced and zinc is oxidized:

        
Zn(s)   +   Cu2+(aq)  →  Cu(s)   +   Zn2+(aq)
        
        This is the spontaneous form of the REDOX reaction and it required us to reverse the
         copper
½ reaction as it appears on the table to reflect copper's oxidation.

         For each of the following combinations, use the
Standard Reduction Potentials Table to
         write the  spontaneous and non-spontaneous versions of the REDOX reaction.

           a.
Zn & Pb           b. Cd & Ni           c. Fe &  Sn            d.   Mg & Al       e.  Na & I2     

53.2   For each of the following situations, determine if a spontaneous REDOX reaction occurs.
          If a spontaneous reaction does occur, write the reaction.
          If a spontaneous reaction does NOT occur, indicate this by "striking through" the reaction.

           a.  Solid magnesium placed in a solution of 1.0 M PbCl2

           b.  Solid nickel placed in a solution of 1.0 M FeCl2

           c.  Solid zinc placed in a solution of 1.0 M CuCl2

           d.  Solid lead placed in a solution of 1.0 M AlCl3


53.3   Gavanic (a.k.a. Voltaic) cells are clever
          arrangements of REDOX 
½ reactions.

          The oxidation reaction occurs on one
          side and the reduction reaction occurs
          on the other side.  The entire assembly
          is known as a "cell".


          Referring to the cell at right, answer the
          following questions:

          a.
  Which species is oxidized and which
                is reduced.


         b. Which electrode is the anode? 
             Which electrode is the cathode?

galvanic cell
         c.  Which electrode gains mass as the cell operates?
              Which electrode loses mass as the cell operates?
 
         d.  In which direction do electrons flow through the wire?

         e.  What are the oxidation and reduction half reactions?

         f.  What is the balanced total cell reaction?

         g.  How many electrons flow according to the balanced total cell reaction?

         h.  How do the NO3- and K+ ions move as the cell operates?

53.4   A voltaic cell is constructed using the following two ½ cells and a KBr salt bridge:

           Half cell #1:   Nickel rod in 1.00 M Nickel chloride solution (NiCl2)
           Half cell #2:   Copper rod in 1.00 M copper chloride solution (CuCl2).

           Draw the cell (beakers, electrodes, wires, etc) and then answer the same questions
           as in problem 53.3

Answers:  Click and drag in the space below

53.1    a. 
Spontaneous:             Zn(s)   +   Pb2+(aq)  →   Zn2+(aq)    +   Pb(s)
               
non- Spontaneous:    Zn2+(aq)   +   Pb(s)  →    Zn(s)        +   Pb2+(aq)      

           b.  Spontaneous:              Cd(s)   +   Ni2+(aq)  →   Cd2+(aq)    +   Ni(s)
                
non-  Spontaneous:    Cd2+(aq)   +   Ni(s)  →    Cd(s)        +   Ni2+(aq)      

           c.  Spontaneous:                Fe(s)   +   Sn4+(aq)        →   Fe2+(aq)    +  Sn2+(aq)
                 non- Spontaneous:     
Fe2+(aq)   +   Sn2+(aq)  →    Fe(s)        +   Sn4+(aq) 

           d.  Spontaneous:               2Al3+(aq)   +   3 Mg(s)        →  2 Al(s)        +  3 Mg2+(aq)      
               
non-  Spontaneous:     2 Al(s)        +   3 Mg2+(aq)   →  2Al3+(aq)   +   3 Mg(s)

           e.  Spontaneous:               2 Na(s)        +  I2(s)       →  2 Na+(aq)   +   2 I-(aq)
               
non-  Spontaneous:     2 Na+(aq)   +   2 I-(aq)    → 2 Na(s)        +  I2(s) 


53.2  a.  This question is asking if the following reaction is spontaneous:
            
             
Mg(s)        +   Pb2+(aq)       →    Mg2+(aq)   +   Pb(s)

               Where Mg is oxidized and Pb2+ is reduced.  This is consistant with Mg being lower
               on the Standard Reduction Table.  The reaction is spontaneous and
               we would observe magnesium metal dissolving and lead metal forming.

         b.  This question is asking if the following reaction is spontaneous:
            
             
Ni(s)        +   Fe2+(aq)       →    Ni2+(aq)   +   Fe(s)

               Where Ni is oxidized and Fe2+ is reduced.  This is NOT consistant with Fe being lower
               on the Standard Reduction Table  The reaction is NON spontaneous and
               we would observe no reaction taking place.

          c.  This question is asking if the following reaction is spontaneous:
            
              Zn
(s)        +   Cu2+(aq)       →    Zn2+(aq)   +   Cu(s)

              
Where Zn is oxidized and Cu2+ is reduced.  This is consistant with Zn being lower
               on the Standard Reduction Table.  The reaction is spontaneous and
               we would observe zinc metal dissolving and copper metal forming.

         d.  This question is asking if the following reaction is spontaneous:
            
             
2 Al3+(aq)   +   3 Pb(s)     →      2 Al(s)        +   3 Pb2+(aq)

              
Where Pb is oxidized and Al3+ is reduced.  This is NOT consistant with Al being lower
               on the Standard Reduction Table.  The reaction is NON spontaneous and
               we would observe no reaction taking place.


53.3    a. Al is oxidized and Zn2+ is reduced based upon their positions on the reduction table

         b. Oxidation = Anode (-)      ... Al electrode   
             Reduction = Cathode (+) ... Zn electrode
   
         c.   Zn electrode gains mass (...we say that the zinc "plates out")
              Al electrode loses mass   (...we say the aluminum electrode dissolves)

         d.  Electrons flow from the Al electrode (Anode) to the Zn electrode (Cathode) through the wire.

         e.  Oxidation   Al(s)                  →   Al3+(aq)   +   3e-
              Reduction   Zn2+(aq)  + 2e- →  Zn(s) 

          f.   2Al(s)   +   3Zn2+(aq)                →   2Al3+(aq)   +  3 Zn(s)  


          g.  6 electrons flow for every cycle of the reaction.

           h. The NO3- ions move out of the salt bridge and into the Al(NO3)3 solution to replace
                the negative charge that leaves as electrons flow through the wire.
 
               The K+ ions move out of the salt bridge and into the Zn(NO3)2 solution to neutralize the
               negative charge that develops as electrons flow through the wire and into the Zn 
½ cell.

53.4  a. Ni is oxidized and Cu2+ is reduced based upon their positions on the reduction table

         b. Oxidation = Anode (-)      ... Ni electrode   
             Reduction = Cathode (+) ... Cu electrode
   
         c.   Cu electrode gains mass (...we say that the copper "plates out")
              Ni electrode loses mass   (...we say the nickel electrode dissolves)

         d.  Electrons flow from the Ni electrode (Anode) to the Cu electrode (Cathode) through the wire.

         e.  Oxidation   Ni(s)                  →   Ni2+(aq)   +    2e-
              Reduction   Cu2+(aq)  + 2e- →  Cu(s) 

          f.   Ni(s)   +   Cu2+(aq)                →   Ni3+(aq)   +   3Cu(s)  


          g.  2 electrons flow for every cycle of the reaction.

           h. The Br- ions move out of the salt bridge and into the NiCl2 solution to replace
                the negative charge that leaves as electrons flow through the wire.
 
               The Na+ ions move out of the salt bridge and into the CuCl2 solution to neutralize the
               negative charge that develops as electrons flow through the wire and into the Cu 
½ cell.
.
.

Thursday April 11, 2024   Day 61
Abbreviated Electrochemical Cell Diagrams

Textbook Readings

19.3: Voltaic Cells- Generating Electricity
         from Spontaneous Chemical Reactions

P2:   Table of Standard Reduction Potentials
           NOTE: Oxidation is ABOVE reduction in this table.

Course Lectures

21.1 pdf   Video* Spontaneous REDOX reactions

               ***Note:  The REDOX table used in this video is
                                 the top to bottom reverse of the one we use
                                 in this course.  In other words, oxidation is
                                 ABOVE reduction  in tables like the one at
                                 left or available here.


21.2 pdf   Video* Electrochemical Cells: Intro
Objectives

1.  Construct abbreviated
electrochemical
        cell diagrams including:
    
         * Oxidation (left) and Reduction (right)
         *  (aq), (s) and (g) designations
         * Solution concentrations
         * Phase barriers |
         * Salt bridge ||
         * Conductive electrodes

2.  Given an abbreviated electrochemical cell
      diagram write the oxidation and reduction
     
½ reactions and the net cell reaction.

Cell Diagrams

Cell Diagrams

Homework Problems. 


54.1  Consider the following abbreviated cell diagram:

            Cd(s) | Cd(NO3)2(aq)  (1.0 M)  || AgNO3(aq) (1.0 M) | Ag(s)

           a.  Which species is oxidized?   Which species is reduced?

           b.  Identify the cathode.   Identify the anode.

           c.  What are the respective half cell reactions?

           d.  What is the net cell reaction

           e.  Which electrode increases in mass as the cell operates
                Which electrode decreases in mass as the cell operates

           f.   Which solution increases in concentration as the cell operates
                Which solution decreases in concentration as the cell operates

           g.  If a wire were connected across the cell, in what direction would the electrons flow?

54.2 
If the following spontaneous REDOX reaction were used in a galvanic cell,
               what would be the abbreviated cell diagram?

                 
Cr(s)     +      Fe3+(aq) (2.0 M)    →     Cr3+(aq) (3.0 M)     +    Fe(s)    


54.3   In the following abbreviated cell diagram, a platinum electrode is used because
          the reduction reaction doesn't involve anything that can serve as an electrical conductor.

         Although the Pt electrode conducts electrical current in/out of the
½ cell, the
         electrode is completely unreactive and isn't oxidized or reduced.  It does serve as a
         catalytic surface that facilitates the reduction of H+ into H2.

                       Pb(s)   | Pb2+(aq) (2.5 M)  ||  H+(aq) (1.0 M) |H2(g) | Pt

       What are the oxidation, reduction and net reactions for this cell?



54.4  If the following REDOX reaction were used in a galvanic cell,
              what would be the abbreviated cell diagram?

                 Pb(s)      +     2FeCl3(aq) (1.0 x 10-3 M)   
→   2FeCl2(aq) (3.5 M)  +      PbCl2(aq)



Answers:  Click and drag in the space below

54.1   a. Oxidized:       Cd(s)     Reduced:        Ag+(aq)

          b. Anode (-):      Cd(s)     Cathode (+):  Ag(s)

          c.  Oxidation:  Cd(s)   
  Cd2+(aq)     +   2 e-

               Reduction:  Ag+(aq)   +   1 e-   
→    Ag(s)

          d.  
Cd(s)   +   2 Ag+(aq)  →    Cd2+(aq)     +  2 Ag(s)

          e.  The Cd electrode dissolves (via oxidation) and loses mass
               The silver electrode gains mass (via reduction) as aqueous Ag+ plates out.

          f.  
Cd(NO3)2(aq)  solution increases in concentration
               
AgNO3(aq)     solution decreases in concentration

          g.  Electrons would flow through the wire from the Cd electrode and into the Ag electrode.


54.2   
Cr(s)  |  Cr3+(aq) (3.00 M)  ||   Fe3+(aq) (2.00 M)  |  Fe(s)


54.3   Oxidation:    Pb(s)
  →    Pb2+(aq)  +  2 e-

          Reduction:   2H+(aq)   +    2 e- 
→  H2(g)

               Net Reaction:  Pb(s)    +     2H+(aq)  →  H2(g)    +    Pb2+(aq)

54.4    Pb(s) | Pb2+(aq)    || Fe3+(aq) (1.0 x 10-3 M),  Fe2+(aq) (3.5 M) |  Pt(s) 
  
              Platinum electrode required since neither form of iron is metallic and can serve
              as an electrode


Friday April 12, 2024    Day 62
Standard Reduction Potentials and the Standard Hydrogen Electrode (SHE)



Textbook Readings

19.4: Standard Reduction Potentials

P2:   Table of Standard Reduction Potentials

           NOTE: Oxidation is ABOVE reduction in this table.


Course Lectures

21.3  pdf   Video  Standard Reduction Potentials

               ***Note:  The REDOX table used in this video is
                                 the top to bottom reverse of the one we use
                                 in this course.  In other words, oxidation is
                                 ABOVE reduction  in tables like the one at
                                 left or available here.


21.4 pdf   Video Predicting Cell Potentials

Standard Reduction Potentials and the Standard Hydrogen Electrode
Standard Reduction Potentials and the Standard Hydrogen Electrode
Standard Reduction Potentials and the Standard Hydrogen Electrode
Standard Reduction Potentials and the Standard Hydrogen Electrode
Objectives

1.  Navigate the Table of Standard Reduction
     potentials, identify
½ reactions and
     determine combinations that occur
     spontaneously.

2.  Use Eored values to determine the Eocell
     values for REDOX reactions and electro-
     chemical cells.

3.  Determine if metals dissolve in HCl or HNO3.
 
4.  Identify a reaction as spontaneous or not based
     uponits
Eocell  value . 
  
Strong Acids as Oxidizing Agents



Strong Acids as Oxidizing Agents
Homework Questions

55.1 What is the standard reduction potential for the standard hydrogen electrode (SHE)?

55.2 Half reactions with negative standard reduction potentials will exhibit oxidation when paired
        with an SHE. 

        This means that reduction occurs at the SHE. 

         a. What should be seen at the SHE as this happens?

         b. How should the concentration of H+ change and what effect will this have on the
             pH of the SHE solution?

55.3 What is E°cell for the following balanced reaction?     

                                                    Zn(s) + Pb2+(aq) → Zn2+(aq) + Pb(s)      

       Given:    Zn2+(aq) + 2e → Zn(s)       E°
red=  –0.7618V                

                      Pb2+(aq) + 2e → Pb(s)       E°
red = –0.126V


55.4 What is E°
cell for the following balanced reaction?       
                                                Al(s) + Fe3+(aq) → Al3+(aq) + Fe(s)           


      
     Given:  Fe3+(aq) + 2e → Fe(s)       E°
red +0.771V       

                   Al3+(aq) + 2e → Al(s)       E°
red = –1.676V


55.5 What is E°
cell for the following balanced reaction?   

                             Fe3+(aq) + NO(aq) + 2H2O(l)   →    4H+ (aq) + Fe(s) + NO3-(aq)       


       Given:  NO3(aq) + 4H+(aq) + 3e → NO(aq) + 2H2O       E°
red = +0.960 V              
         
                     Fe3+(aq) + 3e → Fe (s)                                         E°
red = +0.771 V


55.6 What is
cell for the following cell configuration?  What is the net cell reaction?

                 Cu(s)  | Cu2+(aq) (1.0 M)   ||   Ag+ (aq)  (1.00 M)   |  Ag(s)

55.7  
Some metals dissolve in acid and others don't and what happens depends on the identities
         of both the metal and the acid.  For example, Zn(s) dissolves in HCl(aq) via the following
         REDOX reaction:

                                            Zn(s)    +    2H+(aq)    
→   Zn2+(aq)   +   H2(g)

          This reaction is spontaneous because Zn is above H2 in the table of standard reduction
           potentials. 

          However, copper metal won't dissolve in HCl(aq).    In other words, the following reaction
          does NOT take place (i.e. isn't spontaneous):

                                            
Cu(s)    +    2H+(aq)     →   Cu2+(aq)   +   H2(g)

           The reason the reaction isn't spontaneous is that copper is below
H2 in the table of
           standard reduction potentials.

           Interestingly, copper metal WILL dissolve in nitric acid (HNO3) but for different reasons.
           Although Cu(s) won't react with
H+(aq), it will react with NO3-(aq) via the following NO3-
           reduction ½  reaction:

           
NO3-(aq)    +   4H+(aq)     +  3e-  -->  NO(g)   +    2H2O(l)     Ered = 0.96V

            Because Cu is higher than
NO3- on the reduction table, copper is oxidized and dissolves. 

            In other words, Cu(s) dissolves in HNO3 not because of a reaction with H+, but rather
            because of a reaction with NO3-.

            Find the following metals on the Standard Reduction Table and compare their positions
            to
H+  and NO3-.  For each, say whether they would dissolve in HCl, HNO3 , both or none.

           
a. Au         b. Fe       c. Ag        d. Pb        



1. Which of the following metals would dissolve in nitric acid (HNO3)
     but not in HCl?

    a. Au         b. Cu      c. Fe       d. Ag        e. Co          f. Mg

2. Nitric acid is known as an "oxidizer" and is stored away from all other
    chemicals.  What is an oxidizer and why are the special storage
     conditions required?

Answers:  Click and drag in the space below

55.1 zero volts    

55.2  a. Reduction at the SHE can be written as 2H+(aq)   +   2e- 
→    H2(g)  
         Since hydrogen gas is a product, we should observe additional bubbles of H2.
     b. H+ is used up and concentration of H+ goes down.  With fewer H+ ions in solution,
         the pH of the solution goes UP.

55.3   + 0.637 V    
    
55.4  + 2.431 V    
    
55.5   - 0.189 Volts (note that it is negative. 
                            This tells us that the reaction is non spontaneous as written. 
                             The reverse reaction would have a E°cell = +0.189 V and therefor
e be spontaneous)

55.6 + 0.4577 Volts             Cu(s)   +   2 Ag+(aq)   
→ Cu2+(aq)  +   2 Ag(s)    

55.7 
 
a. Au (Ered = 1.50 V)  No reaction with either HCl or HNO3
           b. Fe
(Ered = -0.45 V) Reacts with both HCl and HNO3
           c. Ag  (Ered = 0.80 V) Will react with HNO3 but not HCl
           d. Pb
(Ered = -0.13 V)  Will react with both  HCl and HNO3    



.
.
.
.
.