5


Monday  February 5, 2024 Day 20

General Equilibrium Concepts


Textbook Reading

13.1 Chemical Equilibria




Course Lectures

7.1 pdf   Video*  Intro. to Chem. Equilibrium
7.2 pdf   Video*  Law of Mass Action


Equilibrium: Crash Course Chemistry


Visual Demonstration of Chemical Equilibrium


Objectives

1.  Describe what is meant by dynamic equilibrium and provide real-life examples.
          .....define phase equilibrium
          .....define "closed system"
          .....identify the forward process
          .....identify the reverse process

  2.  Write chemical equations as equilibrium reactions   
          .....Use the double arrow in chemical equations to denote
                the existence  of chemical equilibrium

  3.  Know the significance of Ratef = Rater

 4.   Draw/Interpret Conc. vs Time graphs

Homework Problems

11.1  
Refering to the diagram at right, answer
          the following questions (a - e) ...

          a. Why is the initial concentration of
              
NO2 zero and why does it increase?

          b.  Why do the concentrations of NO and
               O2  initially decrease?

         
c.  Both reactants begin with 0.0010 M
               concentrations.  Why does the
               concentration of NO decrease faster
               than the concentration of O2?

Equilibrium products and reactants changingProduct and reactant changes for equilibrium

               d. When reactant and product concentrations no longer change, the system is at equilibrium.
               At approximately what time does this system reach equilibrium?

          e.  In this reaction, are all reactants converted into products?  How is this result different
               from what you would have expected as a Principles of Chemistry 1 student?

          f.  Once equilibrium has been reached, how do the concentrations of O2, NO and NO2 change?

11.2   Equilibrium requires two competing processes. As a teacher, the equilibrium I maintain is
          the balance between the arrival of ungraded student papers and the departure of graded
          student work.  What is an example, in your life, of two competing processes and their
          equilibrium?

11.3  The reaction of nitrogen gas with hydrogen gas produces gaseous ammonia.
          What is the forward reaction?  What is the reverse reaction? 
          Write the reaction as an equilibrium readtion.
 

Click and drag the region below for correct answers

11.1  a.  NO2 is a product and initially there is none present.  The concentration of NO2 increases
              as the chemical reaction takes place making product from the two reactants.
         b.  The reactants, NO and O2 are the only species initally present.  As they react and form
               product, their concentrations decrease.
         c.    NO levels decrease twice as fast as O2 levels because the balanced chemical reaction
                tells us that 2 NO molecules are required for every O2  molecule.
         d.    After approximately 5000 seconds the reactant & product levels are observed to stabilize.
         e.     In 1st semester chemistry, we dealt with "completion reactions" where it's assumed that
                 reactants are entirely converted into products.  The surprise here is that for equilibrium
                 situations, the reverse reaction converts product back into reactants.... and this
                 process competes with the forward reaction.
          f.  Once equlibrium has been reached after 5000 seconds, the concentrations of products
               and reactants don't change (i.e. they're constant)

11.2   I'll be interested to see what you come up with for this question.

11.3  Forward reaction:        N2(g)   +   3 H2(g)   →  2 NH3(g)

         Reverse  reaction:        
N2(g)   +   3 H2(g)     2 NH3(g)

         Equilibrium reaction:  
N2(g)   +   3 H2(g)     2 NH3(g)

                                  .....OR...
  N2(g)   +   3 H2(g)     2 NH3(g)

                                                 



Tuesday February 6, 2024    Day 21

Equilibrium: Reaction Quotients and Equilibrium Shifts


Textbook Readings

13.2 Equilibrium Constants


Course Lectures

7.2 pdf   Video*  Law of Mass Action
8.2 pdf   Video*  The Reaction Quotient "Q"
7.3 pdf   Video*  Determining an Equil. Constants


The Equilibrium Constant


K (Equilibrium Constant) vs Q (Reaction Quotient)

Objectives

1.  Given a balanced chemical reaction write out the  Law of Mass Action

2.  Given the Law of Mass Action (LMA) expression, insert equilibrium concentrations for
          products and reactants and calculate a value for the equilibrium constant Keq.

3.  Identify pure solids (s) and liquids (l) and NOT include them when writing out the
           Law of Mass action for the equilibrium.

3.  Given the LMA expression, insert non-equilibrium concentrations for
          products and reactants and calculate the reaction quotient "Q".

4.  Use Q and Keq to determine which direction the reaction shifts.

5.  Describe what is meant as a "shift right" or "shift left" in regards to equilibria.

Homework Problems

12.1.  Write the mathematical expression for the reaction quotient, Qc,
            for each of the following reactions:

             a.   N2(g)          +      3 H2(g)       ↔      2 NH3(g)

             b.   4 NH3(g)    +      5 O2(g)
       ↔      4 NO(g)      +      6 H2O(g)

             c.    N2O4(g)
                                ↔      2 NO2(g)
           

             d.   NH4Cl(s)
                               ↔       NH3(g)       +       HCl(g)
            

             e.   2 H2(g)       +    O2(g)
             ↔       2 H2O(l)
           

12.2    For each of the following, use the LMA expression you derived above and the equilibrium
           concentrations provided to determine a value for the equilibrium constant Keq.

           a. 
N2(g)          +      3 H2(g)       ↔      2 NH3(g)                               Keq  =   _____
                                                                    
                Equilibrium Concentrations:
 
                                    
[N2]eq    = 2.50 M  
                                     [
H2]eq    = 1.95 M               [NH3]eq  = 0.45 M



           b.  4 NH3(g)    +      5 O2(g)       ↔      4 NO(g)      +      6 H2O(g)    Keq  =   _____

                Equilibrium Concentrations: 

                                    
[NH3]eq       = 0.53 M          [NO]eq        = 0.22 M
                                     [O2]eq         = 1.02 M          [H2O]eq      = 0.13 M 


                                   
            c.  N2O4(g)       ↔      2 NO2(g)

                  Equilibrium Concentrations: 

                                    
[N2O4]eq       = 1.78 M          [NO2]eq        =  2.55 x 10-4 M

                                    
             d.  NH4Cl(s)      ↔       NH3(g)       +       HCl(g)

                    Equilibrium Concentrations: 

                                    
[NH3]eq       = 4.89 x 10-4 M          [HCl]eq        =  9.44 x 10-1 M


              e.    2 H2(g)       +    O2(g)             ↔       2 H2O(l)

                      Equilibrium Concentrations: 

                                    
[H2]eq       = 6.88 x 10-18 M          [O2]eq        =  1.45 x 10-17 M

12.3   The initial concentrations or pressures of reactants and products are given for each
          of the following systems.

          Calculate the reaction quotient and determine the direction
          the system shifts to reach equilibrium and the effect on reactant and product levels.

          a.  2 NH3(g)
  ↔  N2(g)  +  3 H2(g)       Kc   =   17

                initial molar concentrations:  [NH3]i = 0.50 M,    [N2]
i = 0.15 M,         [H2]i = 0.12 M

          b.  2 NH3(g) 
↔  N2(g)  +  3 H2(g)       K =  6.8×104

                 initial pressures (P
i):              NH3 = 2.00 atm,        N2 = 10.00 atm,      H2 = 10.00 atm

          c.  2 SO3(g)
  ↔  2 SO2(g)  +  O2(g)     Kc =  0.230

                
initial molar concentrations:    [SO3]i = 2.00 M,   [SO2]i = 2.00 M,      [O2]i = 2.00 M

          d. 
2 SO3(g)  ↔  2 SO2(g)  +  O2(g)    K=  6.5atm

                 initial pressures
(Pi):               SO2 = 1.00 atm,        O2 = 1.130 atm,     SO3 = 0 atm

          e.  2 NO(g)  +  Cl2(g)
  ↔  2 NOCl(g)   K= 2.5×103

                 initial pressures
(Pi):                NO = 1.00 atm,      Cl2 = 1.00 atm,        NOCl = 0 atm

          f.    N2(g)    +O2(g)
  ↔  2 NO(g)         Kc  = 50.

                initial molar concentrations:  [N2]i = 0.100 M,       [O2]i = 0.200 M,      [NO]i = 1.00 M



12.4   What is meant when it's said a reaction shift right?   ...or left?

Click and drag the region below for correct answers

12.1  Answers click HERE

12.2   a.
Keq    = 0.0109                            b. Keq  =  1.29 x 10-7                       c. Keq    =  3.65 x 10-8              
               d. Keq    =    4.62 x 10-4                 e.   Keq  =  1.46 x 1051

12.3   a.  Q = 1.036 x 10-3       Q < K
c     Reaction shift right  
                                                                  Products increase and reactants decrease

          b. 
Q = 2.50 x 103          Q < KP     Reaction shift right
                                                                  Products increase and reactants decrease

          c.   Q = 2                        Q >
Kc      Reaction shifts left
                                                                   Products decrease and reactants increase

          d.   Q =
  (infinity)      Q > KP        Reaction shifts left
                                                                   Products decrease and reactants increase (from zero)

          e.  
Q =  0                       Q < KP     Reaction shift right (initially, there are no products)
                                                                  Products increase and reactants decrease

          f.   Q = 50                      
Q = Kc     Products and reactants in dynamic equilibrium
                                                                   No change expected.

12.4  When a reaction is said to shift right, it means that reactants are converted into products.
        That is, product amounts increase and reactant amounts decrease.

        When a reaction shifts left, products are converted into reactants via the reverse reaction.
         Product levels drop and reactant levels increase.


.

Wednesday February 7, 2024   Day 22

Equilibrium Constant Manipulations


Textbook Readings

13.2 Equilibrium Constants



Course Lectures

8.3 pdf   Video*  Equilibrium Constants: Recipes
8.4 pdf   Video*  Kc and Kp conversionss


Relating Kc and Kp

Manipulating Kc and Kp
Objectives

1. Combine equilibrium reactions and constants to obtain new "net" reactions and its
    corresponding equilibrium constant.

2.  Know that when reversing equilibrium reactions, the equilibrium constant is inverted.
     (inverted means to 1/x)

3.  Know that when multiplying an equilibrium reaction by "n", the new equilibrium constant
     is determined as Kn

4.  Know that when combining equilibrium constants from steps used to create the "net"
     reaction, the individual equilibrium constants are multiplied together.

5.  Determine
Δn from the balanced equlibrium equation.

6.  Calculate Kp from  Kc values (vice versa) using Δn and the following equation:
 
                                                             Kp = Kc(RT)Δn 


Homework Problems

13.1   Use the following equilibrium reaction and equilibrium constant:

                          
A      +      2B            2C         K = 10

         ...to determine the equilibrium constant for this reaction:


                                 2A     +    4B   
     4C              K = _______                      

13.2   
Use the following equilibrium reaction and equilibrium constant:

                        
A      +      2B            2C          K = 10

         ...to determine the equilibrium constant for this reaction:

                               4C          2A      +      4B         K = _______    

13.3   Given the following information:

                                   HF(aq)                 
    H+(aq)       +        F-(aq)                  Kc = 6.8 x 10-4
                               H2C2O4(aq)             
   2 H+(aq)     +     C2O42-(aq)             Kc = 3.8 x 10-6

     Determine the equilibrium constant for the following reaction:

                                   2HF(aq)    + C2O42-(aq)  
2 F-(aq)     +   H2C2O4(aq)       Kc = ________

13.4  Calculate the equilibrium constant for this reaction:  2A   +   B  
   C   + 3D 

           given the following reaction steps:

                                        Rxn1:      A + B     
       D                        K1 =  0.40
                                        Rxn2:      A + E     
      C + D + F           K2 =  0.10
                                        Rxn3:      C + E     
      B                          K3 =  2.0
                                        Rxn4:      F + C     
      D + B                   K4 =  5.0

13.5  What is
Δn for each of the following balanced equilibria?

           a.   CO(g)     +      3 H2(g)          ↔      CH4(g)      +      H2O(g)

            b.   CO(g)      +      H2O(g)        ↔     CO2(g)      +     H2(g)

            c.   CO(g)       +       2H2(g)        ↔     CH3OH(g)

            d.    CO(g)     +        1/2 O2(g)    ↔   CO2(g)

            e.    2H2(g)     +            O2(g)   ↔     2H2O(l)

13.6  For the reaction        2NO2(g) 
   N2O4(g)         KP = 7.3 at 25 oC. 

     What is Kc for this reaction?
         

Answers:  Click and drag in the space below
13.1   
100     
13.2    0.010
13.3    K = 0.12
13.4    K  = 0.10
13.5    a.  -2     b.   0     c. -2      d. -0.5     e. -3  Liquids don't count
13.6   
179
 
.

Thursday February 8, 2024  Day 23

Equilibrium Constants and their Magnitudes.


Textbook Readings

13.2 Equilibrium Constants


Course Lectures

8.1 pdf   Video*  What Equil. Constants tell us

Objectives

1.  Describe what the magnitudes of equilibrium
     constants tell us about relative product
     and reactant amounts present at equilibrium.

2.  Describe how reactions shift in each of the
     following four situations:
 
     i.  Large Keq and small amount of
         product initially present

The Magnitude of Equilibrium Constants

     ii.  Large Keq and large amount of  product initially present

     iii.  Small
Keq and small amount of  product initially present

     iv. 
Small Keq and large amount of  product initially present


Homework Problems

14.1.  Kc = 1 x 1010 for an equilibrium reaction.  What is favored?

14.2.  Kc = 1.0 x 10-10 for an equilibrium reaction.  What is favored?

14.3  Consider the following reaction, initial pressures and equilibrium constant:
                        2 NO(g)     +     O2(g)    
↔       NO2(g)       K  = 1.00 x 104
            initial   2.0 atm          1.0 atm           0.0 atm

     a.  Can this reaction create products?
     b.  Is the equilibrium constant large or small?  Does this favor products or reactants?
     c.  When equilibrium is reached, how will the amount of products compare to the reactants?
     d.  In reaching equilibrium,  will there have been large changes in reactant and product levels?
     e.  Will there be much reactant left at equilibrium?

14.4  Consider the following reaction, initial pressures and equilibrium constant:

                         2 H2(g)        +     O2(g)    
↔         2H2O(g)      Kp = 1.389 x 1080
                         1.00 atm          1.00 atm             0.00 atm

     a.  Can this reaction make products?
     b.  Is the equilibrium constant large or small?  Does this favor products or reactants?
     c.  When equilibrium is reached, how will the amount of products compare to the reactants?
     d.  In reaching equilibrium,  will there have been large changes in reactant and product levels?
     e. Will there be much reactant left at equilibrium?

14.5  Consider the following reaction, initial pressures and equilibrium constant:

                        2CO2(g)   
↔      2CO(g)     +     O2(g)         Kp = 6.77 x 10-91
                         1.00 atm            1.00 atm           0.00 atm

     a.  Can this reaction make products?
     b.  Is the equilibrium constant large or small?  Does this favor products or reactants?
     c.  When equilibrium is reached, how will the amount of products compare to the reactants?
     d.  In reaching equilibrium,  will there have been large changes in reactant and product levels?
     e. Will there be much reactant left at equilibrium?

Answers:  Click and drag in the space below
14.1  This is a large equilibrium constant and products are favored.
14.2  This is a small equilibrium constant and reactants are favored.
14.3    a.  Yes.  With a lot of reactant and absolutely no product, the reaction can certainly
                       make product.

        b.  The Kp value is large and this suggests that the equilibrium favors product formation.

        c.  At equilibrium, the amount of product will be much larger than any remaining reactant. 
                      Note, that in this  equilibrium situation, a small amount of reactant must remain.

        d. Large changes have taken place.  Initially, there was no product. 
                      However, conditions are right for a lot of product formation.  We initially have
                      a lot of reactant available and the equilibrium constant favors product formation.

        e. The initial pressures are in the correct stoichiometric ratio for a complete
                     reaction 2.0 atm NO :  1.0 atm O2.  Therefore, both reactants will be used up
                     almost completely.  However, small amounts of both reactants will be left
                     to maintain the final equilibrium.

14.4     a.  Yes.  With a lot of reactant and absolutely no product, the reaction can certainly
                       make product.

        b.  The Kp value is large and this suggests that the equilibrium favors product formation.

        c.  At equilibrium, there will be a large amount of product since we started entirely
                       with reactant and the Kp value is large

        d.  There will have been large changes to both reactants (decreased) and products (increased)

         e.  Since the reactant stoichiometry is 2:1 we have twice as much O2 as is required. 
                        Therefore, when equilibrium is reached, H2 levels will be very small
                        but about  0.50 atm of the O2  remains as an unreacted reactant. 

14.5     a. Yes. With a lot of reactant and absolutely no product, the reaction can certainly
                     make product.

        b.  The Kp value is small and this suggests that the equilibrium favors reactant formation.

        c.  The equilibrium constant supports reactant formation. Since reactants are all we
                       have initially, we don't expect much change.

                       Only a small amount of product will form; just enough to create the
                       chemical equilibrium.

       d. As already mentioned,  only a very small amount of product will form. 
                        Consequently any changes  from the inital pressures will be very small.

       e.  Reactant levels will be very near to their initial levels.

.

Friday February 9, 2024
   Day 24
Le Châtelier’s Principle


Textbook Readings

13.3 Shifting Equilibria:
                    Le Châtelier’s Principle


Course Lectures


Objectives

1.  Utilize Le Chatelier's Principle to predict
     reaction shifts that occur when reactant
     or product concentrations change

2. 
Le Chatelier's Principle to predict
     reaction shifts that occur when
pressure
     or volume changes

3. 
Le Chatelier's Principle to predict
     reaction shifts that occur when
     temperature changes.


Le Chatelier's Principle


Homework problems.

15.1  Consider the following equilibrium reaction:

                                H2(g)     +     O2(g)    
↔      H2O2((l)        ΔHrxn  =  - 187 kJ/mol

        a.   How does the equilibrium shift if H2 is added?  How are the O2 levels affected by the shift.
        b.   Where does the word "heat" belong in this reaction?
        c.   How does the equilibrium shift if the temperature is increased?
        d.   How do the number of reactant particles compare to the number of product particles?
        e.   How does the equilibrium shift if the pressure is increased?
        f.    How does the equilibrium shift if the volume is decreased?


15.2    Consider the following equilibrium reaction:

                              
2 NH3(g)          N2(g)       +       3 H2(g)             ΔHrxn  =  + 92 kJ/mol

         a.  How does the equilibrium shift if NH3 is removed from the reaction container?
         b.  How does the reaction shift if the volume of the reaction container is decreased?
         c.   How does the reaction shift if the temperature of the reaction is cooled?


15.3   Consider the following equilibrium reaction:

                                     2 SO3(g)     
      2 SO2 (g)    +     O2 (g)           ΔHrxn  =  197.78 kJ

       List all steps you can take to maximize product yield.


15.4   Consider the following equilibrium reaction:

                                         Reactants (red) 
↔   Products  (blue)

      The reaction mixture is heated and observed to change from red to blue.
 
             a.   In which direction (right or left) has the reaction shifted to achieve a new equilibrium?
             b.   How has the shift affected the reactant and product levels?
             c.    How has heating the reaction mixture changed the equilibrium constant?
             d.   Where does the word "heat" belong (reactant or product)?
             e.   Is the reaction exothermic or endothermic?
             f.   If an increased in pressure shifts the color back to red, what do you know?


Answers:  Click and drag in the space below.

15.1   a.  Adding hydrogen gas (a reactant) causes the reaction to shift right as the reaction
                attempts to convert the excess H2 into product.  O2 levels will decrease as
               the reaction shifts right even though they weren't responsible for the shift initially.
             
          b.   Since
ΔHrxn  < 0 (neg)  the reaction is exothermic and the word "heat" belongs
                 on the product side of the reaction

          c.  Increasing temperature is the same as adding heat.  Since heat is a product in this
               reaction, additional heat shifts the reaction left.

          d.  There are two reactant particles and one product particle.

          e.   Increasing the pressure (equivalently decreasing the volume) has the effect of
                increasing the density of particles.  The reaction shifts in a direction to reduce
                the particle crowding.  A rightward shift comverts two particles into one, effectively
                lowering the particle crowding.

          f.    A decrease in volume is equivalent to an increase in pressure and the reaction shifts right.

15.2   a.  Removing reactant causes the reaction to shift left to replace the missing reactant.
          b.  2:4   ...the reaction shifts left to reduce particle denstiy.
          c.  This is an endothermic reaction and "heat" is a reactant.  Cooler temps will produce a
               leftward shift.

15.3   i.  Increase temperature
          ii.  Lower pressure or increase volume
          iii.  Add SO3 , a reactant, to the reaction chamber.
          iv.   Remove SO2 or O2 product from the reaction chamber.

15.4    a.  Shifts right
           b.  Reactant level decreases, Product level increases.
           c.  Since a rightward shift increased product levels and decreased reactant levels
                 to reach a new equilibrium, the equilibrium constant (Product/Reactant ratio)
                 has increased.
           d.  "Heat" is a reactant
           e.   The reaction is endothermic
           f.    The color change tells us that the equilibrium shifts left when pressure is increased.
                 This is only possible if there are fewer reactant particles than product particles
                 in the balanced reaction.

.
.
.
.
.
.
.
.







End Week 5