Monday February 19, 2024    Day 30

Bronstad Lowry Acids and Bases


Textbook Readings

14.1 Bronstad Lowry Acids and Bases


Course Lectures

10.1 pdf   Video*  Acid Base Models

Acid Base Models

Arrhenius, Lowry-Bronstad and Lewis
Acid - Base Models*

Objectives

1.  Provide definitions for Arrhenius, Lowry-Bronstad and Lewis acids and bases.

2.  Identify Arrhenius, Lowry-Bronstad and Lewis acids and bases individually and
     in chemical equations.

3.  Identify conjugate acids and bases in  chemical equations

4.  Know the meaning of the term "amphoteric."
 

Homework Problems

21.1  Arrhenius acid/base model:            
                  What is an acid? 
                  What is a base?
         Lowry Bronstad acid/base model: 

                  What is an acid? 
                  What is a base?

         Lewis acid/base model:                   
                 What is an acid? 
                 What is a base?


21.2  For each of the following reactions
         identify the reactant-side Lowry
        Bronstad acid and base.

a.  NH3(aq)  +  HCl(aq)
  NH4+(aq)  +  Cl-(aq)
        
b.   F-(aq)     +   H2O(l)  
  HF(aq)   +   OH-(aq)

c.  
H2O(l)  +   NH3(aq) ↔  NH4+(aq)  +  OH-(aq)

d. 
H2CO3(aq)  + OH-(aq) ↔  HCO3-(aq) + H2O(l) 

21.3  For each of the reactions in 21.2
         identify the product side
Lowry
         Bronstad acid and base.


21.4  For each of the reactions in 21.2 record
         the conjugate acid base pairs.
Lewis Acid Base Questions

21.5   Identify the acid base pairs in the reaction below.
 
                   a.  SO32-(aq)     +     H2O(l)    
↔     HSO3-1(aq)     +     OH-(aq)


                   b.  HSO3-1(aq)   +   H2O(l)       ↔    H2SO3aq)       +      OH-(aq)


21.6  A species that can behave both as an acid and a base is labeled "amphoteric."
          Examine your answers to 22.5 and determine the identity of the amphoteric species.
 

21.7   Water is amphoteric.  Write an equilibrium reaction that has two water molecules
           as reactants and hydronium and hydroxide ions as products.

21.8  
Identify the Lewis acid & base in  each of the reactions above.


Click and drag for answers below:

21.1   a.  Arrhenius:  Acid produces H3O+ and base produces OH-
          b.  Lowry/Bronstad:  Acid is a proton (H+) donor.  Base is a proton (H+) receiver
          c.  Lewis:   Acid is an electron pair reciever.  Base is an electron pair donor.

21.2  a.  LB Acid: HCl        LB Base: NH3
         b.  LB Acid: H2O       LB Base: F-
         c.  LB acid: H2O        LB Base: NH3
         d.  LB acid: H2CO3    LB Base: OH-

21.3 For reverse reactions:
         a. LB acid: NH4+     LB base: Cl-
         b. LB acid: HF         LB base: OH-
         c. LB acid: NH4+     LB base: OH-
         d. LB acid: H2O       LB base: HCO3-

21.4  a. (acid...base)  
HCl ... Cl-       &      NH4+ ... NH3      

         b.
(acid...base)  H2O ...OH-      &      HF  ...   F-

         c.
(acid...base)    H2O ...OH-      &    NH4+  ...  NH4+

         d.
(acid...base)  H2CO3 ...  HCO3-    &   H2O ...OH- 

21.5
           a.  Base: SO32-(aq)     Acid:  HSO3-1(aq)       &        Acid:  H2O(l)     Base:  OH-(aq)


                  b.  Base:  HSO3-1(aq)   Acid:  H2SO3aq)      &        Acid:  H2O(l)      Base:  OH-(aq)

21.6
  HSO3-1(aq) is amphoteric as it can behave both as an acid or base depending on whether it
                            is losing or gaining a proton (H+)

21.7             Acidic behavior H2O(l)  
   H+(aq)     +     OH-(aq)
                    Basic behavior
   H2O(l)    +     H+(aq)    H3O+(aq)    
                    -------------------------------------------------------------------
                      Net Rxn:  
H2O(l)    +     H2O(l)        H3O+(aq)    +     OH-(aq)

21.8
             Net Rxn:   H2O(l)    +     H2O(l)        H3O+(aq)    +     OH-(aq)
                                      (acid)            (base)               (acid)               (base)


.

Tuesday February 20, 2024  Day 31   

The Relative Strengths of Acids and Bases


Textbook Readings

14.3: The Relative Strengths of Acids and Bases.

16.4: Acid Strength & Ka


Course Lectures

10.2 pdf   Video*  Strong/Weak Acid Comp.
Memorize The Strong & Weak Acids & Bases


8.3 Strong and Weak Acids and Bases


Objectives

1. Describe what is meant by a strong acid, weak acid, strong base and weak base.

2.  Predict the conjugate base strength for corresponding strong or weak acids. 
     Predict the conjugate acid strength for corresponding strong or weak bases.

3.  In an acid/base equilibrium, identify the strong acid, weak acid, strong base and weak base.

4.  Predict the magnitude of the acid dissociation constant given relative product and
        reactant amounts.
      
5.  Identify strong and weak acids based on a comparison of equilibrium constants;  i.e. Ka values

     .....Identify weak/strong acids, bases, conjugate acids and conjugate bases.

     .....Suggest Ka values for acids based upon their strength.
 
     ..... Compare Ka values and use to list the acids according to their strengths.

     .....Use Ka value to order conjugate bases according to their strengths.


Homework Problems

22.1 Strong acids undergo complete ionization
        in water.  This reaction only makes
        products:

    HA(aq)    +     H2O(l)        H3O+(aq)   +   A-(aq)

   Use the table at right to write the strong acid
   ionization reactions for the 5 "strong" acids.

   These strong acids should be memorized.

22.2  Weak acids undergo partial ionization
        in water.  This equilibrium reaction
        has both reactants and products present
        in equilibrium:

   
HA(aq)     +     H2O(l)     H3O+(aq)   +   A-(aq)

Acid Base Strength table

    Use the table above to write weak acid dissociation equilibrium reactions for
                      a.  hydrofluoric acid               b.   nitrous acid                  c.  carbonic acid     

22.3   Strong bases undergo a complete reaction with water that forms hydroxide ions. 
        This reaction only makes products:

                      B-(aq)       +     H2O(l)     
      OH- (aq)       +     BH(aq)

         Notice that the strong base,
B-(aq) , isn't actually present once the reaction occurs but is instead
         found as BH.

         Use the table above to write the strong base reaction for the following strong bases.
         a. methide                   b. amide            c. sulfide          

22.4  Weak bases undergo a partial reaction with water that forms small numbers of hydroxide
          ions in equilibrium:
 
                  
        B-(aq)       +     H2O(l)           OH- (aq)       +     BH(aq)

         Note that the 7 weakest bases in the table above are so weak that a reaction with water
         doesn't occur. 

          Write the weak base equilibrium reactions for the following weak bases

          a. chloride     b. perchlorate     c. fluoride        d. ammonia

22.5   How are the chemical equations that describe strong and weak acids with
                water the same/different?
          How are
the chemical equations that describe  strong and weak bases with
               water the  same/different?

22.6   What distinguishes a strong acid from a weak acid?
          What distinguishes a strong base from a weak base?

22.7  
Consider the equilibrium reaction of acetic acid in water:
acetic acid equilibrium reaction
      
         
The small equilibrium constant (1.76 x 10-5) tells us that reactants are favored. 

          The bar graphs below each species represents an equilibrium concentration and  are
          consistent with a small equilibrium constant.

          H2O isn't shown as a bar graph since it is a liquid and not included in the Law of Mass Action.

          a.  Of the two species labeled "acid", which is present in a greater amount? 
               Label this species "WEAK ACID" as it does not successfully dissociate.

          b. 
Of the two species labeled "acid", which is present in a lesser amount? 
                Label this species "STRONG ACID" as it more successfully dissociates.

          c. 
Of the two species labeled "base", which is present in a greater amount? 
                Label this species "WEAK BASE" as it doesn't successfully acquire an H+ ion.

          d.  
Of the two species labeled "base", which is present in a lesser amount? 
                Label this species "STRONG BASE" as it does successfully acquire an H+ ion.


 
22.8    Consider the following reaction and its large equilibrium constant.

                      F-(aq)     +    
H3O+(aq)             HF(aq)       +     H2O(l)         K = 1.4 x 103

            Identify all acid base conjugate pairs and label them as strong or weak.



Click and drag for answers below.

22.1 Six of them!

        HCl(aq)   + H2O(l)   ⟶   H3O+
(aq)     +     Cl-(aq) 

        HNO3(aq)   + H2O(l)   ⟶   H3O+(aq)     +     NO3-(aq) 

        HBr(aq)   + H2O(l)   ⟶   H3O+(aq)     +     Br-(aq) 

        HI(aq)   + H2O(l)   ⟶   H3O+(aq)     +     I-(aq) 

        H2SO4(aq)   + H2O(l)   ⟶   H3O+(aq)     +     HSO4-(aq) 

       HClO4(aq)   + H2O(l)   ⟶   H3O+(aq)     +     ClO4-(aq) 


22.2    a.   
HF(aq)   + H2O(l)     H3O+(aq)     +     F-(aq) 
           b.  
HNO2(aq)   + H2O(l)     H3O+(aq)     +     NO2-(aq) 
           c.   H2CO3(aq)   + H2O(l)     H3O+(aq)     +     HCO3-(aq) 

22.3   a.   CH3-(aq)       +     H2O(l)           OH- (aq)       +     CH4(aq)
          b.   NH2-(aq)       +     H2O(l)           OH- (aq)       +     NH3(aq)
          c.     S2-(aq)       +     H2O(l)             OH- (aq)       +     S2H(aq)

22.4  NOTE:  "a" and "b" are such weak bases that even though we can write their
                    equilibrium reactions, we understand that virtually no products are ever present. 

          a. 
Cl-(aq)       +     H2O(l)           OH- (aq)       +     HCl(aq)
          b.  ClO4-(aq)         +     H2O(l)           OH- (aq)       +     HClO4(aq)
          c.  F-(aq)       +     H2O(l)           OH- (aq)       +     HF(aq)
          d.  NH3(aq)       +     H2O(l)           OH- (aq)       +     NH4+(aq)

22.5  a. All acid reactions have water as a reactant and hydronium (H3O+) as a product.
             However, strong acids are considered completion reactions as for all practical
             purposes only hydronium and the weak base ion are present.  Weak acids are in
             equilibrium with their dissociation products and all are present in real amounts.

         b. Like acid dissociation reactions, base reactions also have water as a reactant but instead
             have hydroxide (OH-) as a product..
             Strong bases produce hydroxide completely while weak bases produce hydronium
             ions at lower levels in an equilibrium situation.

22.6  Strong acids produce 100% hydronium ions.  Weak acids produce far fewer and there's
              an equilibrium situation with water as a reactant.
              Strong bases produce 100% hydroxide ions.  Weak bases broduce far fewer and there's
              an equilibrium situation with water as a reactant.
22.7  a. Comparing the two acids, H3O+ and CH3COOH, the latter is present in higher
             concentrations and is therefore the weaker acid.
         b.
Comparing the two acids, H3O+ and CH3COOH,     H3O+  is present in lower
             concentration and is therefore the stronger acid.

         c. Weak bases are created by strong acids and since the strong acid is H3O+,
             the weak base  is H2O.
         d.
By similar reasoning, the strong base is always associated with the weak acid.  Therefore
             CH3COO- is the stronger base.
22.8           F-(aq)     +     H3O+(aq)             HF(aq)       +     H2O(l)         K = 1.4 x 103
           In this case, the equilibrium constant is very large and so we know that there's a lot
           more product present than reactant.  This let's us compare acid and base levels
           on either side of the arrow to determine their relative strengths.

           HF    Weaker acid   (Higher conc)   ....   associated with stronger base   F-
          
H3O+ Stronger acid (lower conc)      .... associated with weaker base H2O
           
.

Wednesday February 21, 2024    Day 32

Autoionization of Water:  pH and pOH


Textbook Readings

LT: 16.5 Autoionization of Water and pH



Course Lectures

10.3 pdf   Video*  Conj. Acid/Base and Recipes
Objectives

1.  Write the equilibrium reaction for the
      autoionization of water

2.   Write the Law of Mass Action for the
       autoionization of water

3.   Memorize the value of Kw at 25oC

4.   Given any two of three variables, calculate
      the third:   [H3O+] [OH-] = Kw

5.   Qualitatively know how the autoionization
      reaction shifts knowing it's endothermic
.

6.   Calculate pH, pOH and pKw:
  

         pH = - log [H3O+]       
                                      pOH  =  - log[OH-]       
                                                                          
pH + pOH =  pK = 14   @   25oC
                                                                                                                                                                       
pKw  =   -log Kw
    

Homework Problems

23.1   What is the chemical reaction that describes the autoionization of water and why is water
          considered amphiprotic?

23.2   All of the equilibria we study are in aqueous environments.  Because water is present in
           very large amounts, its autoionization reaction establishes the connection between  [OH-]
           and [H3O+] via the Law of Mass Action.  What is this mathematical relationship?   

23.3   Kw is the equilibrium constant for the autoionization of water.  At 25 oC, Kw = 1.00 x 10-14.

          What are [H3O+] &  [OH-]  for distilled water at 25 oC?

23.4   
At 30 oC, Kw = 1.47 x 10-14.

          What are [H3O+] &  [OH-]  for distilled water at 30 oC?
 

23.5   What are the pH and pOH values for problems 23.3 and 23.4?

23.6   Experimentally, we'll measure the pH of a solution using a pH probe.  From the pH,
          we can determine the molar concentration of 
[H3O+] &  [OH-]

          a.  Start with
pH = - log [H3O+]      and derive a relationship that lets us calculate [H3O+] from pH.

          b.  What are the
[H3O+] &  [OH-] concentrations if the measured pH = 3.56?

23.7   As you can see from problems 23.3 and 23.4, Kw increases with increasing temperature.

           Is the autoionization of water an exothermic or endothermic reaction?  Explain.




Answers:  Click and drag in the space below

23.1   H2O(l)   +   H2O(l)    ↔     H3O+(aq)  +   OH-(aq)                 

           Water is amphoteric since it can behave as either a Lowry Bronstad acid OR base depending
           on the situations.  In the autoionization reaction, one water molecule behaves as an acid
           and the other as a base.

23.2    Kw = [H3O+] [OH-]       

23.3  
[H3O+]   =   [OH-=    1.00 x 10-7 M

23.4  
[H3O+]   =   [OH-=    1.21 x 10-7 M

23.5    For 23.3     pH = pOH = 7.00
           For 23.4     pH = pOH = 6.91

23.6    a. 
[H3O+] 10-pH
           b. 
[H3O+] = 2.75 x 10-4 M          [OH-= 3.63 x 10-11 M

23.7    Increasing the temperature increases the value of the equilibrium constant Kw.

           A larger equilibrium constant is consistent with more product and less reactant.

           Therefore, "heat" is a reactant (endothermic).  Adding heat, a reactant shifts the reaction right.

.
.

Thursday February 22, 2024   Day 33

Weak Acid Equilibrium


Textbook Readings

16.6: Finding the [H3O+] and pH of
         Strong and Weak Acid Solutions


Course Lectures

11.1 pdf   Video*  Weak Acid Equilibrium and pH


Calculating the pH of a strong acid solution



Calculating the pH of a weak acid solution
Note: Final answer should be pH = 2.33  (2 SF)


Objectives

1. Correctly calculate the pH of a strong acid solution.

2. Correctly calculate the pH of a weak acid solution.`


Homework Problems

24.1  As you know, strong acids completely ionize. 

                              HCl(aq)     +     H2O(l)        
100%      H3O+(aq)       +      Cl- (aq)
 
         This means that although a bottle might be labeled 1.00 M HCl, there is no significant
         concentration of HCl in the bottle.  [HCl] = 0

         However, knowing ionization reaction is 100/% complete and that the mole ratios are 1:1:1, we know
         that [ H3O+]   = [Cl- ]  =   1.00 M

         Now, using our definition of pH we obtain:    pH =  - log [H3O+]    =  - log (1.00) =  0.00  

         and      pOH    =     14.00  - pH     = 14.00   (@ 25oC)

        Note: When performing Log calculations, only the digits AFTER the decimal point are significant.

        Write the dissociation reaction and calculate the pH and pOH for each of the following
        strong acid solutions:

                   a.  0.010 M  HNO3             b.  1.33 x 10 -5 M  HCl           c.  0.15 M HClO4

24.2  Determining the pH of weak acid solutions require an ICE equilibrium approach.

         For example, consider a bottle of acetic acid labeled 1.00 M.  The bottle's concentration
         refers to value BEFORE equilibrium is achieved.  That is, 1.00 M is the initial concentration
         of the acetic acid.

         Thus, we have the following ICE problem where we've assumed no product is initially present.

              CH3COOH(aq)       +  
H2O(l)          H3O+(aq)       +      CH3COO- (aq)            Ka  = 1.76 x 10-5
     
     I              1.00 M                     ~                       0.00 M                    0.00 M

     C                -x                                                      +x                             +x
 
     E            1.00 - x                                                   x                                x


           Using the Law of Mass action and the x ~ 0 assumption lets us easily calculate
          
[H3O+]    =   4.195 x 10-3 M    and    pH = 2.3772  (...an acidic pH)

           Note: When performing Log calculations, only the digits AFTER the decimal point
                     are significant.   Thus, pH = 2.377 has three significant figures.

           Construct an ICE table for each of the following weak acid solutions and determine
           the pH of the solution.  Ka values are available HERE.


           a.  0.500 M 
hydrocyanic acid
           b. 
0.500 M  benzoic acid
           c. 
0.500hydrofluoric acid
           d. 
0.500hypochlorous acid

24.3    All of the acids in 24.2 have the same "bottle concentration" of 0.500 M and yet they have
           different pH's.

          Compare Ka and pH for the weak acids and explain how they're related and how Ka can be used
          to predict the strength of a weak acid given comparable "bottle labels".


Answers:  Click and drag in the space below

24.1   a.  pH = 2.00 (2 SF)    pOH = 12.00      b. pH = 4.8761   (3 SF)     pOH = 9.1238
         
          c.  pH  =  0.823   (2 SF)  pOH = 13.18

24.2   a.  pH = 4.75      b. pH = 2.25       c.  pH  =  1.75       d. pH = 3.85

24.3   Smaller equilibrium constants =>  fewer products =>  lower
[H3O+] =>  Higher (less acidic) pH

.
.


Friday February 23, 2024   Day 34

Weak Base Equilibrium


Textbook Readings

16.6: Finding the [H3O+] and pH of
         Strong and Weak Acid Solutions



Course Lectures

11.3 pdf   Video*  Intro to Weak Base Equilibrium
pH of Weak Acids and Bases, Salt Solutions,
Ka, Kb, pOH Calculations
Acid Base Equilibria, pH of Weak Bases


Objectives

1. Calculate Ka values from Kb values and vice versa.

2. Correctly calculate the pH of a strong base solution.

3. Correctly calculate the pH of a weak base solution.`



Homework Problems

25.1 As you know, strong bases completely dissociate in water. 

                              NaOH(s)   
100%      Na+(aq)       +      OH- (aq)
 
         This means that although a bottle might be labeled 1.00 M NaOH, there is no significant
         concentration of intact NaOH in the bottle.  [NaOH] = 0

         However, knowing dissociation  is 100/% complete and that the mole ratios are 1:1:1, we know
         that [ Na+]   =   [OH- ]  =   1.00 M

         Now, using our definition of pOH we obtain:    pOH =  - log [OH-]    =  - log (1.00) =  0.00  

         and      pH    =     14.00  - pOH     = 14.00   (@ 25oC)

        Note: When performing Log calculations, only the digits AFTER the decimal point are significant.

        Write the dissociation reaction and calculate the pH and pOH for each of the following
        strong base solutions:

                   a.  0.050 M KOH           b.  1.50 x 10-5 M LiOH          c.  2.66 x 10-4 M Ba(OH)2 

 
25.2  As you'll read in the text book section above, the weak acid equilibrium constant Ka, is related
          to the weak base equilibrium constant Kb in the following way:

                                                              Kw  =   Ka  x  Kb
         
          Thus, you can use an acid's Ka value to determine its conjugate base's Kb value

          For example:

  Acid:      
CH3COOH(aq)       +   H2O(l)          H3O+(aq)       +      CH3COO- (aq)            Ka  = 1.76 x 10-5
 
  Base:      
CH3COO- (aq)          +   H2O(l)          OH- (aq)            +     CH3COOH(aq)          Kb = ____?____


                        Where
Kb   =   Kw /Ka   =   1.00 x10-14/ 1.76 x 10-5     =    5.681 x 10-10


            Examine the following weak acids, write their corresponding weak base equilibrium reactions
            and calculate the Kb value.


                a.  HF    
         Ka  =  6.2 x 10-4                             b. C5H5NH+     K =  5.90 x 10-6

                c. HCO2H     
Ka  =  1.78x 10-4                            d. NH3                K =  1.00 x 10-35


25.3    A bottle is labeled 0.250 M NaCH3COO (sodium acetate).  The pH of the solution must be
           determined via and ICE table:

           
CH3COO- (aq)          +   H2O(l)       OH- (aq)         CH3COOH(aq)          Kb =   5.681 x 10-10

     I          0.250 M                                           0.000 M             0.000 M

     C             -x                                                    + x                       +x

     E      (0.250 - x)                                                x                         x

             Use the corresponding Law of Mass action to determine "x" , the pOH and pH of the solution.


25.4  10.55 grams of potassium fluoride is dissolved in 500.0 mL of distilled water.
                              
Useful info:  For HF       Ka  = 7.20 x 10-4

          a.  Determine the initial fluoride ion concentration
          b.  Write the corresponding weak base equlibrium reaction
          c.   Construct an ICE table.
          d.   Use the Law of Mass Action to determine "x"
          e.   Determine the pOH and pH of the solution.


25.5    A 0.150 M weak base solution has a pH of 10.55     Calculate.....

           a.   Kb for the base
           b.   Ka for the conjugate acid


Click and drag the region below for correct answers

25.1 
a.  KOH(s)        →100%      K+(aq)       +      OH- (aq)           pOH = 1.30    and pH = 12.70
  
         b. 
LiOH(s)        →100%      Li+(aq)       +      OH- (aq)         pOH = 4.82    and pH = 9.18

         c. Ba
(OH)2(s)     →100%      Ba2+(aq)       +      2OH-(aq)      pOH =3.27    and pH = 10.72

25.2   a.     
F- (aq)          +   H2O(l)       OH- (aq)          HF(aq)                   Kb =   1.612 x 10-11
  
          b.   
C5H5N- (aq)  +   H2O(l)       OH- (aq)         HC5H5N(aq)          Kb =   1.695 x 10-9
              
          c.   
HCO2- (aq)  +   H2O(l)       OH- (aq)         H2CO2(aq)               Kb =   5.618 x 10-11

          d.  
NH3 (aq)          +   H2O(l)       OH- (aq)         NH4+(aq)                  Kb =   1.000 x 1021

25.3   x =  1.191 x 10-5 M    = [OH-]      pOH = 4.923   pH = 9.0761

25.4   [F-] initial = 0.363187
     
         
F- (aq)          +   H2O(l)       OH- (aq)          HF(aq)                   Kb =   1.612 x 10-11
 
               x = 2.2459 x 10-6     pOH = 5.6486        pH = 8.3513

25.5   [H3O+] = 10-pH  =  2.818 x 10-11  M        

          [OH-]   =   Kw /
[H3O+]  =   3.548 x 10-4 M

          a.   Kb = 8.392 x 10-7         
      
          b.   Ka = 1.191 x 10-8

.
.

End Week 7