.
.

Monday February 12, 2024    Day 25

Equilibrium:   ICE and Determining Equilibrium Concentrations
 

Textbook Readings

13.4 Equilibrium Calculations




Course Lectures

9.1 pdf   Video*  Det. Equil. Conc. (perfect square)



How to Generate an ICE Table

 
Equilibrium Concentration (Perfect Square)


Objectives

1. Verify balanced chemical equation
2.  Record the ICE table beneath the balanced chemical equation
     (Initial, Change, Equilibrium)

3. Determine the Law of Mass action expression from the ICE table
4. Substitute equilibrium concentration expressions into  the Law of Mass Action
5. Solve for "x"
6. Determine equilibrium concentrations using "x" determined above
7.  Double check equilibrium concentrations by substituting into
           the LMA  expression to verify "K"


Homework Problems

16.1   1.00 mole of H2 and 2.00 moles of I2 are placed in a sealed, 1.00 L reaction container
           and the following reaction takes place.  ...

         
Calculate initial concentrations, complete the ICE table below and write out the
          law of mass action (LMA).

                                          H2(g)         +         I2(g)        
↔         2HI(g)          Keq = 3.5

                  Initial             _______               _______               _______

                  Change           _______              ________              _______

                  Equilibrium     _______              ________              _______

                        
16.2   0.500 mole of H2,  2.00 moles of CO2  and 0.75 mole of CO are placed in a sealed,
          2.00 L reaction container  and the following reaction takes place.  ...

         
Calculate initial concentrations, complete the ICE table below and write out the LMA.

                                 H2O(g)         +         CO(g)        
↔         CO2(g)          +         H2(g)          Keq = 0.015

          Initial             _______                  _______                  _______                 _______

          Change           _______                 ________                 _______
                 _______

          Equilibrium     _______                 ________                 _______
                 _______


16.3   2.00 moles of H2 and 2.00 moles of I2 are placed in a sealed, 1.00 L reaction container
           and the following reaction takes place.  ...

                                          H2(g)         +         I2(g)        
↔         2HI(g)                      Keq = 3.5

         
Calculate initial concentrations, create/complete an ICE table and use the Law of Mass
          action to determine values for "x" and the equilibrium concentrations.

       

16.4  
1.500 mole of H and  1.50 moles of CO2 are placed in a sealed,
          2.00 L reaction container  and the following reaction takes place.  ...

                       H2O(g)         +         CO(g)        
↔         CO2(g)          +         H2(g)     Keq = 0.015

         
Calculate initial concentrations, create/complete an ICE table and use the Law of Mass
          action to determine values for x and the equilibrium concentrations.


16.5    Consider the following ICE problem and determine a value for "x" and the
            equilibrium constant.


                                HC2H3O2(aq)         +         
H2O(l)        ↔      H3O+(aq)       +     C2H3O2-(aq)    

           Initial                1.00 M                                                          0.00 M                    0.00 M             

           Change             _______                                                     1.6 x 10-5 M
           _______

           Equilibrium       _______                                                      _______
                 _______


16.6 
Consider the following ICE problem and determine a value for the equilibrium constant.


                                    A (g)        +       2 B(g)       
↔          3 C(g)

           Initial                1.00 M             0.0500 M                 0.00 M             

           Change             _______           _______
           3.5x 10-2 M 

           Equilibrium       _______           _______
                 _______


 
Click and drag the region below for correct answers

16.1
                                          H2(g)         +         I2(g)        
↔         2HI(g)

                  Initial                1.0 M                  2.0 M                     0.0 M        
                  Change                  -x                        -x                         +2x           
                  Equilibrium       (1.0  -   x)            (2.0 - x)                      2x


                       
LMA:                      (2x)2                 =    3.5
                                                   
(1.0 -x) (2.0 - x)
       
16.2
                                          H2O(g)         +         CO(g)         ↔         CO2(g)          +         H2(g)

                  Initial               0.00 M                  0.3735 M                   1.00 M                    0.250 M
                  Change               
+x                           +x                           -x                             -x
                  Equilibrium            x                     0.375 +  x                   (1.00 - x)                (0.250 - x)



                       
LMA:    (1.00 - x) (0.250 - x)        =   0.015
                                            x (0.375 + x)


16.3     [H2]eq   =   [I2]eq        = 1.033 M                   [HI]eq   =   1.933 M

16.4     [H2O]eq   =   [CO]eq  = 0.668 M                   [CO2]eq   =   [H2]eq  =  0.0818 M

16.5     x =
1.6 x 10-5         Keq   =  2.56 x 10-10

16.6    
x = 1.1666 x 10-2      Keq   =  6.100 x 10-2

.

Tuesday February 13, 2024    Day 26

ICE and Determining Equilibrium Concentrations
 


Textbook Readings

13.4 Equilibrium Calculations


Course Lectures

9.2 pdf   Video*  Det. Equil. Conc. (quadratic)
Equilibrium Equations (Quadratic Solutions)

Practice Problem: ICE Box Calculations

Objectives

1.  Correctly calculate initial concentrations of reactants and products.

2.  Construct ICE tables for equilibrium reactions complete with initial concentrations,
      "x" values and equilibrium concentration expressions.

3.  Set up LMA for equilibrium ICE problems
 
4.  Determine "x" values using the Quadratic Equation and use "x" to determine equilibrium
     concentrations.

5.  Verify calculated equilibrium concentrations by substituting them into the LMA expression and
     comparing the result to Keq.



Homework Problems

17.1  Phosphorus trichloride and chlorine gas react to form phosphorus pentachloride
         via the following reaction:

                                PCl3(g)     +     Cl2(g)     ↔     PCl5(g)                       Kc =  16.0
   
          Initially  5.00 moles of  PCl5(g) are placed in a 5.00 L reaction container. 

       a.   Complete the ICE table for the equilibrium and use the LMA and the quadratic equation
              to determine "x" and the equilibrium concentrations of all species.

       b.   Substitute your equilibrium concentrations back into the LMA and verify that it's value
             equals the equilibrium constant given above.

             (Note that this step is a requirement on all exam equilibrium problems)

17.2   Hydrogen and fluorine gas react to form hydrogen fluoride via the following reaction (source)
 
                             H2(g)     +     F2(g)         ↔     2 HF(g)                         Kc =  1.15 x 102

        Initially, 0.250 moles of H2 and 0.500 moles of F2 are placed in a 250. mL reaction container.

       a. 
Complete the ICE table for the equilibrium and use the LMA and the quadratic equation
              to determine "x" and the equilibrium concentrations of all species.



       b.   Substitute your equilibrium concentrations back into the LMA and verify that it's value
             equals the equilibrium constant given above.

             (Note that this step is a requirement on all exam equilibrium problems)


Answers:  Click and drag in the space below

17.1  x = 0.221     [PCl3(g) ]eq =  0.221 M     [Cl2(g)]eq  = 0.221 M         [PCl5(g) ]e  = 0.779 M

17.2  x = 0.968     [H2]eq = 3.2 x 10-2 M       [F2]eq  =  1.03 M               [HF]eq  =  1.94 M

.
.

Wednesday February 14, 2024    Day 27

Simplifying Equilibrium Assumptions
 

Textbook Readings

13.4 Equilibrium Calculations


Course Lectures

9.3 pdf   Video*  Equilibria: Simplifying Assumptions
9.4 pdf   Video*  Simplifying Assumptions Concluded


Making LMA math EASIER! 



When to make simplifying assumptions

Objectives

1.  Use initial concentrations and Keq values to determine whether the x ~ 0 assumption is valid.


Homework Problems

18.1      For each of the following use the equilibrium constant to determine:
                     i.   products or reactants are favored
                     ii.  direction of the equilibrium shift
                     iii. strength of the shift consider initial reactant amounts
                     iv. if the x ~ 0 assumption is valid.

             Example

                                     H2(g)   +   N2(g) 
  2 NH3(g)                         Kc = 3.7 x 108 
                   Initial       6.0 M        2.0 M      1.0 M
    
                  Answer:  i. Products favored   ii.  Equilibrium shifts right  
                                   iii.  Strong shift        iv.   x~0 approximation is not valid.


            a.                    
3 H2(g)     +    N2(g)        2 NH3(g)                                  Kc = 3.7 x 108 
                   Initial       0.00 M       0.00 M            0.75 M

            b.                       O3(g)    +       NO(g)      
   O2(g)     +     NO2(g)            Kc = 6.00 x 1034  
                    Initial     3.75 M           0.50 M             1.00 M        1.00 M           

             c.                    
3 H2(g)   +   N2(g)    2 NH3(g)                                          Kc = 3.7 x 108 
                   Initial      0.00 M      0.90 M          0.50 M               

             d.                    
3 H2(g)   +   N2(g)    2 NH3(g)                                          Kc = 3.7 x 108            
                    Initial    0.00 M       0.00 M       22.5 M                

            e.                       O3(g)    +       NO(g)      
   O2(g)     +     NO2(g)            Kc = 6.00 x 1034
                    Initial     3.75 M        0.00 M            0.00 M          5.00 M

             f.                       N2(g)    +      O2(g)       
    2NO(g)                                 Kc = 4.10 x 10-31  
                    Initial     2.00 M          2.00 M           2.00 M               

             g.                     
O3(g)    +       NO(g)          O2(g)     +     NO2(g)            Kc = 6.00 x 1034
                     Initial     0.50 M          1.00 M           12.00 M        15.00 M           

             h.
                     3 H2(g)     +    N2(g)        2 NH3(g)                                  Kc = 3.7 x 108 
                    Initial       2.5 M           0.00 M             1.5 M                

             i.                      2 H2S(g)     
      2H2(g)       +       S2(g)                      Kc = 1.67 x 10-7   
                    Initial      0.00 M                 1.00 M               1.00 M           

            j.                    
3 H2(g)     +    N2(g)        2 NH3(g)                                  Kc = 3.7 x 108 
                    Initial     0.00 M           0.15 M           
0.00 M


Answers:  Click and drag in the space below
18.1
     a.
  i. Products favored   ii.  Equilibrium shifts left because there is initially no H2 or N2
           iii.  Slight shift since products present initially        iv.   x~0 approximation VALID


     b.   i. Products favored   ii.  Equilibrium shifts right since both reactants initially present 
           iii.  Strong shift since reaction favors products    iv.   x~0 approximation is NOT VALID.


     c.   i. Products favored   ii.  Equilibrium shifts left since there is no H2 initially 
           iii.  Slight shift since reaction favors products         iv.   x~0 approximation
VALID

     d.   i. Products favored   ii.  Equilibrium shifts left since there is no H2 or N2 initially 
           iii.  Slight shift since reaction favors products         iv.   x~0 approximation
VALID

     e.   Neither the forward nor the reverse reaction can occur since we're missing both
           a reactant AND a product.  No shift occurs.

     f.   i. Reactants favored   ii.  Equilibrium shifts left since there's a lot of product present initially. 
           iii.  Strong shift since reaction favors reactants         iv.   x~0 approximation is 
NOT VALID.

     g.   i. Products favored   ii.  Equilibrium shifts right since both reactants initially present 
           iii.  Strong shift since reaction favors products         iv.   x~0 approximation is NOT VALID.

     h.   i. Products favored   ii.  Equilibrium shifts left since there is initially no N2
           iii.  Slight shift since products are favored         iv.   x~0 approximation is VALID.


     i.   i. Reactants favored   ii.  Equilibrium shifts left since there is no reactant initially present.
           iii.  Strong shift         iv.   x~0 approximation is
NOT VALID.

     j.   Neither the forward nor the reverse reaction can occur since we're missing both
           a reactant AND a product.  No shift occurs.





.

Thursday February 15, 2024   Day 28

Simplifying Assumptions Part 2


Textbook Readings

13.4 Equilibrium Calculations



Course Lectures

9.3 pdf   Video*  Equilibria: Simplifying Assumptions
9.4 pdf   Video*  Simplifying Assumptions Concluded
Making LMA math EASIER! 


When to make simplifying assumptions

Objectives

1.  Use initial concentrations and Keq values to determine whether the x ~ 0 assumption is valid.

2.  Use the LMA expression and the x ~ 0 to solve for "x" and then determine the 
     equilibrium concentrations

3.  Verify the x~0 assumption is valid by performing a 5% test.

4.
Verify calculated equilibrium concentrations by substituting them into the LMA
     expression and comparing the result to Keq.

Homework Problems


19.1  Examine the Law of Mass Action expression below and solve for "x" using then = 0 approximation.
        Check the x~ assumption  with the 5% rule for both "1.75" and "2.25".

                                                                                (2x)2
                                           5.88 x 10-8   = ----------------------------
                                                                  (1.75 - x)(2.25 - 2x)2

19.2  Consider the following equilibrium reaction:     

                                         A(aq)   +   3 B(aq)    ↔   C(aq)                  Kc = 2.9 x 10 -10

         ...where initially       [A] = 5.00 M        [B] =   4.00 M    and     [C] =   0.00 M

           i.   Construct an ICE table for the problem and record the LMA expression
           ii.  The x ~ 0 assumption is valid for this problem.  Why?
           iii.  Solve for x using the x ~ 0 assumption
           iv.  Determine the equilibrium concentrations for all species.
           v.   Verify your equilibrium concentrations reproduce the Kc value
           vi.   Perform all 5% tests.

19.3   Consider the following equilibrium 

                       2 H2S(g)    +    3 O2(g)    ↔    2 H2O(g)    +     2 SO2(g)                   Kc = 7.69 x 108

        ...where initially  [H2S]  = 0.00 M     [O2 ] = 0.00 M     [H2O] = 2.00 M    and [SO2] = 3.00 M

 

           i.   Construct an ICE table for the problem and record the LMA expression
           ii.  The x ~ 0 assumption is valid for this problem.  Why?
           iii.  Solve for x using the x ~ 0 assumption
           iv.  Determine the equilibrium concentrations for all species.
           v.   Verify your equilibrium concentrations reproduce the Kc value
           vi.   Perform all 5% tests.


Answers:  Click and drag in the space below...

19.1  Letting x = 0 in the denominator values we find x = 3.61 x 10-4        
          (3.61 x 10-4  / 1.75)  x 100 =  0.02%   < 5%   ...x ~ 0 assumption is valid

19.2 
                                                                     x
         LMA     2.9 x 10-10   =   --------------------------------------  

                                                     (5.00 - x)    (4.00 - 3x)3


         
x = 9.28 x 10-8          [A]eq = 5.00 M        [B]eq = 4.00 M       [C]eq = 9.28 x 10-8 M

          5% rule checks....  For "A" 0.0000018 %   <   5%    :)
                                           For "B" 0.0000069%  
<   5%    :)


      Note that in this problem the very small equilibrium constant tells us that reactants are favored. 
      Since initially there are nothing but reactants, it is possible to use the x = 0 approximation
      since required right shift will be very small keeping most of the reactants on the left.  
           


19.3 
    

                                                 (2.00 - 2x)2   (3.00 - 2x)2
        LMA      7.69 x 108    =   -------------------------------       
                                                         (2x)2  (3x)3 

                             x = 1.36 x 10-2           [H2S]eq = 2.73 x 10-2M     [O2]eq = 4.09 x 10-2 M
 
                                                                [H2O]eq = 1.97 M              [SO2]eq = 2.97 M

 
     Note that in this problem the very large equilibrium constant tells us that products are favored. 
     Since initially there is nothing but products present, it is possible to use the x = 0 approximation
     since a change from inital conditions will be very small.


       
5% rule checks....  For  H2O   1.36 %  <   5%    :)
                                         For SO2
    0.91 %  <   5%    :)

.
.

Friday February 16, 2024
   Day 29
Material Shifts
 

Textbook Readings

13.4 Equilibrium Calculations




Course Lectures

9.45 pdf  Video* Predicting Reaction Shifts
9.47 pdf  Video* Introduction to Material Shift
9.51 pdf Video*  Material shifts problem 1 & 2
9.52 pdf  Video* Material shifts problem 3
9.53 pdf  Video* Material shifts problem 4s




Objectives

1.   Correctly determine if the x ~ 0 assumption is valid:
               a.  Valid          .... Set up ICE problem and solve completely
                                              using x ~ 0 assumption
               b.  NOT Valid ....  Perform a "Material Shift" and then
solve completely
                                              using x ~ 0 assumption

Homework Problems

20.1   Given the following equilibria and initial concentrations, determine whether a
         Material Shift is necessary
           a.                         A       +       2B         ↔          C                             
Kc = 2.5 x 10-6
                    initial     1.00 M      1.00 M                 0.00 M
 
          b.                          A       +       2B             ↔       C                             
Kc = 2.5 x 10-6
                    initial     0.00 M       0 .00 M                 1.00 M

           c.                          A       +       2B              ↔       C                            
Kc = 2.5 x 10-6
                    initial     0.00 M       1 .00 M                 1.00 M

          d.                         A                 ↔       2D                   +     3C               
Kc = 9.8 x 1010
                    initial     0.00 M                   1 .00 M                 1.00 M

          e.                          A                 ↔       2D                   +     3C               
Kc = 9.8 x 1010
                   initial     1.00 M                   0 .00 M                 0.00 M

20.2  The following equilibria have very small
Kc values and require Material Shifts to the left. 
         What are the new concentrations after the M.S. is done?

     a.                          A       +       2B             ↔       C                       
Kc = 2.5 x 10-6
               initial     0.00 M       0 .00 M                 3.00 M

     b.                           A          ↔         2B          +    C                       
Kc = 2.5 x 10-6
               initial     0.00 M                2.00 M          1.00 M

     c.                           A          ↔         2B          +    C                       
Kc = 2.5 x 10-6
               initial     0.00 M                2.00 M          0.50 M     

3.      0.400 moles HCl,    0.400 moles of HI,  0.400 moles of Cl2   are placed in a 300.0 mL container. 
         There is no I2 initially present.

                         2 HCl(g)    +       I2(g)       ↔       2 HI(g)    +     Cl2(g)         Kc   =   3.50 × 10-32

          
a.  Perform the correct material shift.
           b.  Construct an ICE table and Law of Mass Action
           c.  Solve for "x" using the x~0 assumption.
           d.  Check your equilibrium concentrations for correctness.
           e.   Perform all 5% tests.


Answers:  Click and drag in the space below

20.1   a.  
Kc  is small favoring reactants.  Initially all material is on the reactant side. 
                No Material Shift required and the x ~ 0 assumption is likely valid.

          b.  
Kc  is small favoring reactants.   Initially, all material is on the product side.
               At equilibrium most of C will have been turned into A and B
               Do a material shift before attempting the ICE problem.

          c.  
Kc  is small favoring reactants.   Initially ,there is both B and C present.
               At equilibrium most of C will have been turned into A and additional B.  
               
Do a material shift before attempting the ICE problem.

          d. 
Kc  is large favoring products.  Initially, all material is on the product side. 
               No Material Shift is required
and the x ~ 0 assumption is likely valid.

           e. 
Kc   is large favoring products.  Initially, all material is on the reactant side. 
               
Do a material shift before attempting the ICE problem.

20.2    a.   After Material Shift concentrations are:  [A] = 3.00 M    [B] = 6.00 M    [C] = 0.00M
           b.   After Material Shift concentrations are:  [A] = 1.00 M    [B] = 0.00 M    [C] = 0.00M
           c.   After Material Shift concentrations are:  [A] = 0.50  M   [B] = 1.00 M    [C] = 0.00M

20.3     x = 2.494438 x 10-16     [HCl]eq = 2.67 M                     [I2]eq  =  0.667 M   
                                                  [HI]eq  =  4.99 x 10-16  M        [Cl2]eq  =  0.667 M

 








End Week 6